Vaccinia virus gene D12L encodes the small subunit of the viral mRNA capping enzyme

Virology ◽  
1989 ◽  
Vol 172 (2) ◽  
pp. 513-522 ◽  
Author(s):  
Edward G. Niles ◽  
Guey-Jen Lee-Chen ◽  
Stewart Shuman ◽  
Bernard Moss ◽  
Steven S. Broyles
2019 ◽  
Vol 5 (Supplement_1) ◽  
Author(s):  
S Clouthier ◽  
E Anderson ◽  
G Kurath ◽  
R Breyta

Abstract Namao virus (NV) is a sturgeon nucleocytoplasmic large DNA virus (sNCLDV) that can cause a lethal disease of the integumentary system in lake sturgeon Acipenser fulvescens. As a group, the sNCLDV have not been assigned to any currently recognized taxonomic family of viruses. In this study, a dataset of NV DNA sequences was generated and assembled as two non-overlapping contigs of 306 and 448 base pairs (bp) and then used to conduct a comprehensive systematics analysis using Bayesian phylogenetic inference for NV, other sNCLDV, and representative members of six families of the NCLDV superfamily. The phylogeny of NV was reconstructed using protein homologues encoded by nine nucleocytoplasmic virus orthologous genes (NCVOGs): NCVOG0022—mcp, NCVOG0038—DNA polymerase B elongation subunit, NCVOG0076—VV A18-type helicase, NCVOG0249—VV A32-type ATPase, NCVOG0262—AL2 VLTF3-like transcription factor, NCVOG0271—RNA polymerase II subunit II, NCVOG0274—RNA polymerase II subunit I, NCVOG0276—ribonucleotide reductase small subunit, and NCVOG1117—mRNA capping enzyme. The accuracy of our phylogenetic method was evaluated using a combination of Bayesian statistical analysis and congruence analysis. Stable tree topologies were obtained with datasets differing in target molecule(s), sequence length, and taxa. Congruent topologies were obtained in phylogenies constructed using individual protein datasets and when four proteins were used in a concatenated approach. The major capsid protein phylogeny indicated that ten representative sNCLDV form a monophyletic group comprised of four lineages within a polyphyletic Mimi-Phycodnaviridae group of taxa. Overall, the analyses revealed that Namao virus is a member of the Mimiviridae family with strong and consistent support for a clade containing NV and CroV as sister taxa.


2008 ◽  
Vol 82 (15) ◽  
pp. 7729-7734 ◽  
Author(s):  
Tomoaki Ogino ◽  
Amiya K. Banerjee

ABSTRACT The RNA-dependent RNA polymerase L protein of vesicular stomatitis virus (VSV) elicits GTPase and RNA:GDP polyribonucleotidyltransferase (PRNTase) activities to produce a 5′-cap core structure, guanosine(5′)triphospho(5′)adenosine (GpppA), on viral mRNAs. Here, we report that the L protein produces an unusual cap structure, guanosine(5′)tetraphospho(5′)adenosine (GppppA), that is formed by the transfer of the 5′-monophosphorylated viral mRNA start sequence to GTP by the PRNTase activity before the removal of the γ-phosphate from GTP by GTPase. Interestingly, GppppA-capped and polyadenylated full-length mRNAs were also found to be synthesized by an in vitro transcription system with the native VSV RNP.


1996 ◽  
Vol 271 (20) ◽  
pp. 11936-11944 ◽  
Author(s):  
James R. Myette ◽  
Edward G. Niles

Structure ◽  
2014 ◽  
Vol 22 (3) ◽  
pp. 452-465 ◽  
Author(s):  
Otto J.P. Kyrieleis ◽  
Jonathan Chang ◽  
Marcos de la Peña ◽  
Stewart Shuman ◽  
Stephen Cusack

Sign in / Sign up

Export Citation Format

Share Document