rna triphosphatase
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 3)

H-INDEX

23
(FIVE YEARS 1)

2020 ◽  
Vol 295 (27) ◽  
pp. 9076-9086
Author(s):  
Yuko Takagi ◽  
Naoyuki Kuwabara ◽  
Truong Tat Dang ◽  
Koji Furukawa ◽  
C. Kiong Ho

RNA triphosphatase catalyzes the first step in mRNA cap formation, hydrolysis of the terminal phosphate from the nascent mRNA transcript. The RNA triphosphatase from the protozoan parasite Trypanosoma cruzi, TcCet1, belongs to the family of triphosphate tunnel metalloenzymes (TTMs). TcCet1 is a promising antiprotozoal drug target because the mechanism and structure of the protozoan RNA triphosphatases are completely different from those of the RNA triphosphatases found in mammalian and arthropod hosts. Here, we report several crystal structures of the catalytically active form of TcCet1 complexed with a divalent cation and an inorganic tripolyphosphate in the active-site tunnel at 2.20–2.51 Å resolutions. The structures revealed that the overall structure, the architecture of the tunnel, and the arrangement of the metal-binding site in TcCet1 are similar to those in other TTM proteins. On the basis of the position of three sulfate ions that cocrystallized on the positively charged surface of the protein and results obtained from mutational analysis, we identified an RNA-binding site in TcCet1. We conclude that the 5′-end of the triphosphate RNA substrate enters the active-site tunnel directionally. The structural information reported here provides valuable insight into designing inhibitors that could specifically block the entry of the triphosphate RNA substrate into the TTM-type RNA triphosphatases of T. cruzi and related pathogens.


2020 ◽  
Vol 6 (16) ◽  
pp. eaay6410 ◽  
Author(s):  
Dilip Kumar ◽  
Xinzhe Yu ◽  
Sue E. Crawford ◽  
Rodolfo Moreno ◽  
Joanita Jakana ◽  
...  

In many viruses, including rotavirus (RV), the major pathogen of infantile gastroenteritis, capping of viral messenger RNAs is a pivotal step for efficient translation of the viral genome. In RV, VP3 caps the nascent transcripts synthesized from the genomic dsRNA segments by the RV polymerase VP1 within the particle core. Here, from cryo–electron microscopy, x-ray crystallography, and biochemical analyses, we show that VP3 forms a stable tetrameric assembly with each subunit having a modular domain organization, which uniquely integrates five distinct enzymatic steps required for capping the transcripts. In addition to the previously known guanylyl- and methyltransferase activities, we show that VP3 exhibits hitherto unsuspected RNA triphosphatase activity necessary for initiating transcript capping and RNA helicase activity likely required for separating the RNA duplex formed transiently during endogenous transcription. From our studies, we propose a new mechanism for how VP3 inside the virion core caps the nascent transcripts exiting from the polymerase.


2019 ◽  
Author(s):  
Nicolas Vabret ◽  
Valérie Najburg ◽  
Alexander Solovyov ◽  
Petr Šulc ◽  
Sreekumar Balan ◽  
...  

AbstractPattern recognition receptors (PRRs) protect against host invasion by detecting specific molecular patterns found in pathogens and initiating an immune response. While microbial-derived PRR ligands have been extensively characterized, the contribution and relevance of endogenous ligands to PRR activation during viral infection remain overlooked. In this work, we characterize the landscape of endogenous ligands that engage RIG-I-like receptors (RLRs) upon infection by a positive-sense RNA virus, a negative-sense RNA virus or a retrovirus. We found that several endogenous RNAs transcribed by RNA polymerase 3 (Pol3) specifically engage RLRs, and in particular the family of small non-coding repeats Y-RNAs, which presents the highest affinity as RIG-I ligands. We show that this recognition is dependent on Y-RNA mimicking viral secondary structure and its 5’-triphosphate extremity. Further, we found that HIV-1 infection triggers a VPR-dependent downregulation of RNA triphosphatase DUSP11 in vitro and in vivo, leading to an increase of Y-RNA 5’-triphosphorylation that enables their immunogenicity. Importantly, we show that altering DUSP11 expression is sufficient to induce a type-I interferon and T cell activation transcriptional program associated with HIV-1 infection. Overall, our work uncovers the critical contribution of endogenous repeat RNAs ligands to antiviral immunity and demonstrates the role of this pathway in HIV-1 infection.


Virus Genes ◽  
2018 ◽  
Vol 55 (1) ◽  
pp. 68-75 ◽  
Author(s):  
Mohammad Yunus Ansari ◽  
Piyush Kumar Singh ◽  
Deepa Rajagopalan ◽  
Purnima Shanmugam ◽  
Asutosh Bellur ◽  
...  

2018 ◽  
Vol 115 (32) ◽  
pp. 8197-8202 ◽  
Author(s):  
Rodney P. Kincaid ◽  
Victor L. Lam ◽  
Rachel P. Chirayil ◽  
Glenn Randall ◽  
Christopher S. Sullivan

Seventy percent of people infected with hepatitis C virus (HCV) will suffer chronic infection, putting them at risk for liver disease, including hepatocellular carcinoma. The full range of mechanisms that render some people more susceptible to chronic infection and liver disease is still being elucidated. XRN exonucleases can restrict HCV replication and may help to resolve HCV infections. However, it is unknown how 5′ triphosphorylated HCV transcripts, primary products of the viral polymerase, become susceptible to attack by 5′ monophosphate-specific XRNs. Here, we show that the 5′ RNA triphosphatase DUSP11 acts on HCV transcripts, rendering them susceptible to XRN-mediated attack. Cells lacking DUSP11 show substantially enhanced HCV replication, and this effect is diminished when XRN expression is reduced. MicroRNA-122 (miR-122), a target of current phase II anti-HCV drugs, is known to protect HCV transcripts against XRNs. We show that HCV replication is less dependent on miR-122 in cells lacking DUSP11. Combined, these results implicate DUSP11 as an important component of XRN-mediated restriction of HCV.


mBio ◽  
2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Paul Smith ◽  
C. Kiong Ho ◽  
Yuko Takagi ◽  
Hakim Djaballah ◽  
Stewart Shuman

ABSTRACTEukaryal taxa differ with respect to the structure and mechanism of the RNA triphosphatase (RTPase) component of the mRNA capping apparatus. Protozoa, fungi, and certain DNA viruses have a metal-dependent RTPase that belongs to the triphosphate tunnel metalloenzyme (TTM) superfamily. Because the structures, active sites, and chemical mechanisms of the TTM-type RTPases differ from those of mammalian RTPases, the TTM RTPases are potential targets for antiprotozoal, antifungal, and antiviral drug discovery. Here, we employed RNA interference (RNAi) knockdown methods to show thatTrypanosoma bruceiRTPase Cet1 (TbCet1) is necessary for proliferation of procyclic cells in culture. We then conducted a high-throughput biochemical screen for small-molecule inhibitors of the phosphohydrolase activity of TbCet1. We identified several classes of chemicals—including chlorogenic acids, phenolic glycopyranosides, flavonoids, and other phenolics—that inhibit TbCet1 with nanomolar to low-micromolar 50% inhibitory concentrations (IC50s). We confirmed the activity of these compounds, and tested various analogs thereof, by direct manual assays of TbCet1 phosphohydrolase activity. The most potent nanomolar inhibitors included tetracaffeoylquinic acid, 5-galloylgalloylquinic acid, pentagalloylglucose, rosmarinic acid, and miquelianin. TbCet1 inhibitors were less active (or inactive) against the orthologous TTM-type RTPases of mimivirus, baculovirus, and budding yeast (Saccharomyces cerevisiae). Our results affirm that a TTM RTPase is subject to potent inhibition by small molecules, with the caveat that parallel screens against TTM RTPases from multiple different pathogens may be required to fully probe the chemical space of TTM inhibition.IMPORTANCEThe stark differences between the structure and mechanism of the RNA triphosphatase (RTPase) component of the mRNA capping apparatus in pathogenic protozoa, fungi, and viruses and those of their metazoan hosts highlight RTPase as a target for anti-infective drug discovery. Protozoan, fungal, and DNA virus RTPases belong to the triphosphate tunnel metalloenzyme family. This study shows that a protozoan RTPase, TbCet1 fromTrypanosoma brucei, is essential for growth of the parasite in culture and identifies, viain vitroscreening of chemical libraries, several classes of potent small-molecule inhibitors of TbCet1 phosphohydrolase activity.


2015 ◽  
Vol 464 (2) ◽  
pp. 629-634 ◽  
Author(s):  
Piyush Kumar Singh ◽  
Nivedita Ratnam ◽  
Kannan Boosi Narayanarao ◽  
Harigopalarao Bugatha ◽  
Anjali A. Karande ◽  
...  

RNA ◽  
2014 ◽  
Vol 21 (1) ◽  
pp. 113-123 ◽  
Author(s):  
Selom K. Doamekpor ◽  
Beate Schwer ◽  
Ana M. Sanchez ◽  
Stewart Shuman ◽  
Christopher D. Lima

Sign in / Sign up

Export Citation Format

Share Document