Nonlinear dynamic analysis of vibro-milling in mills with spatial motion—I. Formulation of nonlinear equations of motion

1992 ◽  
Vol 43 (4) ◽  
pp. 761-767
Author(s):  
M. Arghir ◽  
A. Ripianu ◽  
M. Noori
2021 ◽  
Vol 3 (11) ◽  
Author(s):  
Hesam Nazari ◽  
Masoud Babaei ◽  
Faraz Kiarasi ◽  
Kamran Asemi

Abstract In this study, we present a numerical solution for geometrically nonlinear dynamic analysis of functionally graded material rectangular plates excited to a moving load based on first-order shear deformation theory (FSDT) for the first time. To derive the governing equations of motion, Hamilton’s principle, nonlinear Von Karman assumptions and FSDT are used. Finally, the governing equations of motion are solved by employing the generalized differential quadratic method as a numerical solution. Natural frequencies, dynamic bending behavior and stresses of the plate for linear and nonlinear type of geometrically strain–displacement relations and different factors, including the magnitude and velocity of moving load, length ratio, power law exponent and various edge conditions are obtained and compared. Article highlights Developing generalized differential quadrature method (GDQM) solution based on FSDT for dynamic analysis of FGM plate excited by a moving load for the first time. Comparison of linear and nonlinear dynamic response of plate by considering Von-Karman assumption. Observing considerable difference between linear and nonlinear results


2018 ◽  
Vol 18 (02) ◽  
pp. 1850017 ◽  
Author(s):  
Iwona Adamiec-Wójcik ◽  
Łukasz Drąg ◽  
Stanisław Wojciech

The static and dynamic analysis of slender systems, which in this paper comprise lines and flexible links of manipulators, requires large deformations to be taken into consideration. This paper presents a modification of the rigid finite element method which enables modeling of such systems to include bending, torsional and longitudinal flexibility. In the formulation used, the elements into which the link is divided have seven DOFs. These describe the position of a chosen point, the extension of the element, and its orientation by means of the Euler angles Z[Formula: see text]Y[Formula: see text]X[Formula: see text]. Elements are connected by means of geometrical constraint equations. A compact algorithm for formulating and integrating the equations of motion is given. Models and programs are verified by comparing the results to those obtained by analytical solution and those from the finite element method. Finally, they are used to solve a benchmark problem encountered in nonlinear dynamic analysis of multibody systems.


2018 ◽  
Vol 156 ◽  
pp. 351-362 ◽  
Author(s):  
Yi Hui ◽  
Hou Jun Kang ◽  
Siu Seong Law ◽  
Zheng Qing Chen

Sign in / Sign up

Export Citation Format

Share Document