generalized differential
Recently Published Documents


TOTAL DOCUMENTS

525
(FIVE YEARS 124)

H-INDEX

44
(FIVE YEARS 11)

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 174
Author(s):  
Matthew Olanrewaju Oluwayemi ◽  
Kaliappan Vijaya ◽  
Adriana Cătaş

In this article, we construct a new subclass of analytic functions involving a generalized differential operator and investigate certain properties including the radius of starlikeness, closure properties and integral means result for the class of analytic functions with negative coefficients. Further, the relationship between the results and some known results in literature are also established.


2021 ◽  
pp. 4819-4829
Author(s):  
A. Ta. Yousef ◽  
Z. Salleh

This paper aims at introducing a new generalized differential operator and new subclass of analytic functions to obtain some interesting properties like coefficient estimates and fractional derivatives.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2310
Author(s):  
Loriana Andrei ◽  
Vasile-Aurel Caus

Owning to the importance and great interest of differential operators, two generalized differential operators, which may be symmetric or assymetric, are newly introduced in the present paper. Motivated by the familiar Jackson’s second and third Bessel functions, we derive necessary and sufficient conditions for which the new generalized operators belong to the class of q-starlike functions of order alpha. Several corollaries and consequences of the main results are also pointed out.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Eugenia Boffo ◽  
Peter Schupp

Abstract We study a deformation of a 2-graded Poisson algebra where the functions of the phase space variables are complemented by linear functions of parity odd velocities. The deformation is carried by a 2-form B-field and a bivector Π, that we consider as gauge fields of the geometric and non-geometric fluxes H, f, Q and R arising in the context of string theory compactification. The technique used to deform the Poisson brackets is widely known for the point particle interacting with a U(1) gauge field, but not in the case of non-abelian or higher spin fields. The construction is closely related to Generalized Geometry: with an element of the algebra that squares to zero, the graded symplectic picture is equivalent to an exact Courant algebroid over the generalized tangent bundle E ≅ TM ⊕ T∗M, and to its higher gauge theory. A particular idempotent graded canonical transformation is equivalent to the generalized metric. Focusing on the generalized differential geometry side we construct an action functional with the Ricci tensor of a connection on covectors, encoding the dynamics of a gravitational theory for a contravariant metric tensor and Q and R fluxes. We also extract a connection on vector fields and determine a non-symmetric metric gravity theory involving a metric and H-flux.


2021 ◽  
Vol 11 (21) ◽  
pp. 10434
Author(s):  
Faraz Kiarasi ◽  
Masoud Babaei ◽  
Kamran Asemi ◽  
Rossana Dimitri ◽  
Francesco Tornabene

The present work studies the buckling behavior of functionally graded (FG) porous rectangular plates subjected to different loading conditions. Three different porosity distributions are assumed throughout the thickness, namely, a nonlinear symmetric, a nonlinear asymmetric and a uniform distribution. A novel approach is proposed here based on a combination of the generalized differential quadrature (GDQ) method and finite elements (FEs), labeled here as the FE-GDQ method, while assuming a Biot’s constitutive law in lieu of the classical elasticity relations. A parametric study is performed systematically to study the sensitivity of the buckling response of porous structures, to different input parameters, such as the aspect ratio, porosity and Skempton coefficients, along with different boundary conditions (BCs) and porosity distributions, with promising and useful conclusions for design purposes of many engineering structural porous members.


2021 ◽  
Vol 3 (11) ◽  
Author(s):  
Hesam Nazari ◽  
Masoud Babaei ◽  
Faraz Kiarasi ◽  
Kamran Asemi

Abstract In this study, we present a numerical solution for geometrically nonlinear dynamic analysis of functionally graded material rectangular plates excited to a moving load based on first-order shear deformation theory (FSDT) for the first time. To derive the governing equations of motion, Hamilton’s principle, nonlinear Von Karman assumptions and FSDT are used. Finally, the governing equations of motion are solved by employing the generalized differential quadratic method as a numerical solution. Natural frequencies, dynamic bending behavior and stresses of the plate for linear and nonlinear type of geometrically strain–displacement relations and different factors, including the magnitude and velocity of moving load, length ratio, power law exponent and various edge conditions are obtained and compared. Article highlights Developing generalized differential quadrature method (GDQM) solution based on FSDT for dynamic analysis of FGM plate excited by a moving load for the first time. Comparison of linear and nonlinear dynamic response of plate by considering Von-Karman assumption. Observing considerable difference between linear and nonlinear results


Sign in / Sign up

Export Citation Format

Share Document