Resistance to heavy metals of heterotrophic bacteria isolated from the deep-sea hydrothermal vent polychaete, Alvinella pompejana

1990 ◽  
Vol 24 (1-4) ◽  
pp. 81-88 ◽  
Author(s):  
Christian Jeanthon ◽  
Daniel Prieur
2001 ◽  
Vol 67 (10) ◽  
pp. 4566-4572 ◽  
Author(s):  
Barbara J. Campbell ◽  
Christian Jeanthon ◽  
Joel E. Kostka ◽  
George W. Luther ◽  
S. Craig Cary

ABSTRACT Recent molecular characterizations of microbial communities from deep-sea hydrothermal sites indicate the predominance of bacteria belonging to the epsilon subdivision of Proteobacteria(epsilon Proteobacteria). Here, we report the first enrichments and characterizations of four epsilonProteobacteria that are directly associated withAlvinella pompejana, a deep sea hydrothermal vent polychete, or with hydrothermal vent chimney samples. These novel bacteria were moderately thermophilic sulfur-reducing heterotrophs growing on formate as the energy and carbon source. In addition, two of them (Am-H and Ex-18.2) could grow on sulfur lithoautrotrophically using hydrogen as the electron donor. Optimal growth temperatures of the bacteria ranged from 41 to 45°C. Phylogenetic analysis of the small-subunit ribosomal gene of the two heterotrophic bacteria demonstrated 95% similarity to Sulfurospirillum arcachonense, an epsilon Proteobacteria isolated from an oxidized marine surface sediment. The autotrophic bacteria grouped within a deeply branching clade of the epsilonProteobacteria, to date composed only of uncultured bacteria detected in a sample from a hydrothermal vent along the mid-Atlantic ridge. A molecular survey of various hydrothermal vent environments demonstrated the presence of two of these bacteria (Am-N and Am-H) in more than one geographic location and habitat. These results suggest that certain epsilonProteobacteria likely fill important niches in the environmental habitats of deep-sea hydrothermal vents, where they contribute to overall carbon and sulfur cycling at moderate thermophilic temperatures.


2005 ◽  
Vol 52 (12) ◽  
pp. 2333-2352 ◽  
Author(s):  
Charles F. Phleger ◽  
Matthew M. Nelson ◽  
Ami K. Groce ◽  
S. Craig Cary ◽  
Kathryn Coyne ◽  
...  

2004 ◽  
Vol 70 (4) ◽  
pp. 2551-2555 ◽  
Author(s):  
Virginia P. Edgcomb ◽  
Stephen J. Molyneaux ◽  
Mak A. Saito ◽  
Karen Lloyd ◽  
Simone Böer ◽  
...  

ABSTRACT The chemical stress factors for microbial life at deep-sea hydrothermal vents include high concentrations of heavy metals and sulfide. Three hyperthermophilic vent archaea, the sulfur-reducing heterotrophs Thermococcus fumicolans and Pyrococcus strain GB-D and the chemolithoautotrophic methanogen Methanocaldococcus jannaschii, were tested for survival tolerance to heavy metals (Zn, Co, and Cu) and sulfide. The sulfide addition consistently ameliorated the high toxicity of free metal cations by the formation of dissolved metal-sulfide complexes as well as solid precipitates. Thus, chemical speciation of heavy metals with sulfide allows hydrothermal vent archaea to tolerate otherwise toxic metal concentrations in their natural environment.


2002 ◽  
Vol 181 (4) ◽  
pp. 337-356 ◽  
Author(s):  
Ellis J. Maginn ◽  
Crispin T.S. Little ◽  
Richard J. Herrington ◽  
Rachel A. Mills

2021 ◽  
Vol 44 (1) ◽  
pp. 126170
Author(s):  
Sayaka Mino ◽  
Taiki Shiotani ◽  
Satoshi Nakagawa ◽  
Ken Takai ◽  
Tomoo Sawabe
Keyword(s):  
Deep Sea ◽  

Sign in / Sign up

Export Citation Format

Share Document