heterotrophic bacteria
Recently Published Documents


TOTAL DOCUMENTS

1730
(FIVE YEARS 447)

H-INDEX

76
(FIVE YEARS 9)

Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 121
Author(s):  
Tize Xia ◽  
Lushuang Li ◽  
Bin Li ◽  
Peitong Dou ◽  
Hanqi Yang

The previous studies show soil microbes play a key role in the material and nutrient cycles in the forest ecosystem, but little is known about how soil microbes respond to plant distribution, especially in the soil bacterial community in woody bamboo forests. Cephalostachyum pingbianense (Hsueh & Y.M. Yang ex Yi et al.) D.Z. Li & H.Q. Yang, 2007 is known as the only bamboo species producing shoots all year round in natural conditions. Endemic to the Dawei mountain in Yunnan of China, this species is a good case to study how soil bacteria respond to plant endemic distribution. In this work, we assayed the soil chemical properties, enzyme activity, changes in the bacterial community along the distribution range of the C. pingbianense forest. The results showed that soil nutrients at the range edge were nitrogen-rich but phosphorus-deficient, and soil pH value and soil urease activity were significantly lower than that of the central range. No significant difference was detected in soil bacterial diversity, community composition, and function between the central and marginal range of C. pingbianense forest. Notably, the relative abundance of heterotrophy bacteria, such as Variibacter and Acidothermus, in the soil of the C. pingbianense forest was significantly higher than that of the outside range, which may lead to a higher soil organic carbon mineralization rate. These results imply that abundant heterotrophy bacteria were linked to the endemism and full-year shooting in C. pingbianense. Our study is amongst the first cases demonstrating the important role of heterotrophy bacteria in the distribution formation of endemic woody bamboos in special soil habitats, and provides insight into germplasm conservation and forest management in woody bamboos.


Author(s):  
Shailesh Nair ◽  
Chengcheng Li ◽  
Shanli Mou ◽  
Zenghu Zhang ◽  
Yongyu Zhang

Algae and heterotrophic bacteria have close and intricate interactions, which are regulated by multiple factors in the natural environment. Phages are the major factor determining bacterial mortality. However, their impacts on the algae-associated bacteria and thus on the algae-bacteria interactions are poorly understood. Here, we obtained a diatom-associated bacterium Stappia indica SNL01 that could form biofilm and had an inhibitory effect on the growth of diatom Thalassiosira pseudonana . Meanwhile, the phage SI01 with a double-stranded circular DNA genome (44,247 bp) infecting S. indica SNL01 was isolated. Phylogenetic analysis revealed that phage SI01 represents a novel member of the Podoviridae family. The phage contained multiple lysis genes encoding for cell wall lysing muramidase and spore cortex lysing SleB, as well as depolymerase-like tail spike protein. By lysing the host bacterium and inhibiting the formation of biofilm, this phage could indirectly promote the growth of the diatom. Our results shed new insights into how phages indirectly regulate algal growth by infecting bacteria closely associated with algae or in the phycosphere. IMPORTANCE The impact of phage infection on the algae-bacteria relationship in the ocean is poorly understood. Here, a novel phage infecting the diatom-associated bacterium Stappia indica SNL01 was isolated. This bacterium could form biofilm and had a negative effect on diatom growth. We revealed that this phage contained multiple lysis genes and could inhibit the formation of bacterial biofilm, thus indirectly promoting diatom growth. This study implicates that phages are not only important regulators of bacteria but also have substantial indirect effects on algae as well as the algae-bacteria relationship.


2022 ◽  
Author(s):  
Noa Barak-Gavish ◽  
Bareket Dassa ◽  
Constanze Kuhlisch ◽  
Inbal Nussbaum ◽  
Gili Rosenberg ◽  
...  

Unicellular algae, termed phytoplankton, greatly impact the marine environment by serving as the basis of marine food webs and by playing central roles in biogeochemical cycling of elements. The interactions between phytoplankton and heterotrophic bacteria affect the fitness of both partners. It is becoming increasingly recognized that metabolic exchange determines the nature of such interactions, but the underlying molecular mechanisms remain underexplored. Here, we investigated the molecular and metabolic basis for the bacterial lifestyle switch, from coexistence to pathogenicity, in Sulfitobacter D7 during its interaction with Emiliania huxleyi, a cosmopolitan bloom-forming phytoplankter. To unravel the bacterial lifestyle switch, we profiled bacterial transcriptomes in response to infochemicals derived from algae in exponential and stationary growth, which induced the Sulfitobacter D7 coexistence and pathogenicity lifestyles, respectively. We found that algal dimethylsulfoniopropionate (DMSP) was a pivotal signaling molecule that mediated the transition between the lifestyles. However, the coexisting and pathogenic lifestyles were evident only in the presence of additional algal metabolites. In the pathogenic mode, Sulfitobacter D7 upregulated flagellar motility and many transport systems, presumably to maximize assimilation of E. huxleyi-derived metabolites released by algal cells upon cell death. Specifically, we discovered that algae-produced benzoate promoted the growth of Sulfitobacter D7, and negated the DMSP-inducing lifestyle switch to pathogenicity, demonstrating that benzoate is important for maintaining the coexistence of algae and bacteria. We propose that bacteria can sense the physiological status of the algal host through changes in the metabolic composition, which will determine the bacterial lifestyle during the interactions.


2022 ◽  
Author(s):  
Elena Jean Forchielli ◽  
Daniel Jonathan Sher ◽  
Daniel Segre

Microbial communities, through their metabolism, drive carbon cycling in marine environments. These complex communities are composed of many different microorganisms including heterotrophic bacteria, each with its own nutritional needs and metabolic capabilities. Yet, models of ecosystem processes typically treat heterotrophic bacteria as a "black box", which does not resolve metabolic heterogeneity nor address ecologically important processes such as the successive modification of different types of organic matter. Here we directly address the heterogeneity of metabolism by characterizing the carbon source utilization preferences of 63 heterotrophic bacteria representative of several major marine clades. By systematically growing these bacteria on 10 media containing specific subsets of carbon sources found in marine biomass, we obtained a phenotypic fingerprint that we used to explore the relationship between metabolic preferences and phylogenetic or genomic features. At the class level, these bacteria display broadly conserved patterns of preference for different carbon sources. Despite these broad taxonomic trends, growth profiles correlate poorly with phylogenetic distance or genome-wide gene content. However, metabolic preferences are strongly predicted by a handful of key enzymes that preferentially belong to a few enriched metabolic pathways, such as those involved in glyoxylate metabolism and biofilm formation. We find that enriched pathways point to enzymes directly involved in the metabolism of the corresponding carbon source and suggest potential associations between metabolic preferences and other ecologically-relevant traits. The availability of systematic phenotypes across multiple synthetic media constitutes a valuable resource for future quantitative modeling efforts and systematic studies of inter-species interactions.


2022 ◽  
Author(s):  
Natalia Belkin ◽  
Tamar Guy-Haim ◽  
Maxim Rubin-Blum ◽  
Ayah Lazar ◽  
Guy Sisma-Ventura ◽  
...  

Abstract. Planktonic food-webs were studied contemporaneously in a mesoscale cyclonic (upwelling, ~13 months old) and an anti-cyclonic (down-welling, ~2 months old) eddies, as well as in an uninfluenced-background situation in the oligotrophic southeastern Mediterranean Sea (SEMS) during late summer 2018. We show that integrated nutrients concentrations were higher at the cyclone compared to the anti-cyclone or the background stations by 2–13 fold. Concurrently, Synechococcus and Prochlorococcus were the dominant community component abundance-wise in the oligotrophic anti-cyclone (~300 × 1010 cells m−2). In the cyclone, pico- and nanoeukaryotes such as dinoflagellates, Prymnesiophyceae and Ochrophyta contributed substantially to the total phytoplankton abundnce (~14 × 1010 cells m−2) which was ~65 % lower in the anti-cyclone/background stations (~5 × 1010 cells m−2). Primary production was highest in the cyclonic eddy (191 mg C m−2 d−1) and was 2–5 fold lower outside the eddy area. The calculated doubling time of phytoplankton was ~3 days in the cyclone and ~5–10 days at the anti-cyclone/background stations, further reflecting the nutritional differences between these environments. Heterotrophic prokaryotic cell-specific activity was highest in the cyclone (~10 fg C cell−1 d−1), while the least productive cells were found in the anti-cyclone (4 fg C cell−1 d−1). The calculated doubling time of heterotrophic bacteria were 1.4 days in the cyclone and 2.5–3.5 days at the anti-cyclone/background stations. Total zooplankton biomass in the upper 300 m was tenfold higher in the cyclone compared with the anti-cyclone or background stations (1337 vs. 112–133 mg C m−2, respectively). Copepod diversity was much higher in the cyclone (44 species), compared to the anti-cyclone (6 small-size species). Our results highlight that cyclonic and anti-cyclonic eddies show significantly different community compositions and food-web dynamics in oligotrophic environments, with cyclones representing productive oases in the marine desert of the SEMS.


2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Solomon Tibebu ◽  
Abebe Worku ◽  
Kenatu Angassa

This study aimed to evaluate the treatment potential of gradual hydroponics planted with Duranta erecta in the removal of pathogens from domestic wastewater. Two experimental and control units were configured in series. Each unit contains three bioreactors and was arranged in a cascaded configuration. The two experimental units used both plant and media, but the two control units used only media to treat the wastewater. Gravel and polyester sponge were used as media. Experimental unit 1 and control unit 1 used gravel as media; however, experimental unit 2 and control unit 2 used polyester sponges as media. The experiment was operated at hydraulic retention times of 1, 3, 5, and 7 days in a continuous mode. The performance of the hydroponic system was evaluated by characterizing the influent and effluent quality using standard methods. At optimum hydraulic retention time (7 days), the average removal of experimental units 1 and 2 was 98.7% and 89.8% for heterotrophic bacteria, 96.2% and 86.8% for total coliform, and 92.9% and 84.0% for fecal coliform, respectively. Analysis of variance showed that there was a significant difference P < 0.05 between the two experimental and control units in removing pathogens, but no significant difference P > 0.05 was observed between the two experimental units and between the two control units. Heterotrophic bacteria and coliforms were satisfactorily removed from domestic wastewater via a gradual hydroponic system. Hence, the hydroponic treatment system planted with Duranta erecta has a promising potential in the removal of pathogens from domestic wastewater in developing countries including Ethiopia.


2022 ◽  
Vol 119 (2) ◽  
pp. e2110993118
Author(s):  
Christopher L. Follett ◽  
Stephanie Dutkiewicz ◽  
François Ribalet ◽  
Emily Zakem ◽  
David Caron ◽  
...  

Prochlorococcus is both the smallest and numerically most abundant photosynthesizing organism on the planet. While thriving in the warm oligotrophic gyres, Prochlorococcus concentrations drop rapidly in higher-latitude regions. Transect data from the North Pacific show the collapse occurring at a wide range of temperatures and latitudes (temperature is often hypothesized to cause this shift), suggesting an ecological mechanism may be at play. An often used size-based theory of phytoplankton community structure that has been incorporated into computational models correctly predicts the dominance of Prochlorococcus in the gyres, and the relative dominance of larger cells at high latitudes. However, both theory and computational models fail to explain the poleward collapse. When heterotrophic bacteria and predators that prey nonspecifically on both Prochlorococcus and bacteria are included in the theoretical framework, the collapse of Prochlorococcus occurs with increasing nutrient supplies. The poleward collapse of Prochlorococcus populations then naturally emerges when this mechanism of “shared predation” is implemented in a complex global ecosystem model. Additionally, the theory correctly predicts trends in both the abundance and mean size of the heterotrophic bacteria. These results suggest that ecological controls need to be considered to understand the biogeography of Prochlorococcus and predict its changes under future ocean conditions. Indirect interactions within a microbial network can be essential in setting community structure.


2021 ◽  
Vol 56 (2) ◽  
pp. 111-121
Author(s):  
Yira D. Tapia-Gallardo ◽  
Miguel A. Del Río-Portilla ◽  
Ceres A. Molina-Cárdenas ◽  
M. del Pilar Sánchez-Saavedra

Diatoms, such as Chaetoceros, grow in a mutualistic relationship with bacteria. However, in some cases, it is necessary to grow them in bacteria-free cultures. To reduce bacterial load, antibiotics are used, and on certain occasions it is necessary to use a mixture with more than one antibiotic. This work aimed to obtain a quick and effective protocol to reduce the bacterial load and evaluate the response of three Chaetoceros species with aquacultural importance. Single and mix antibiotics were used. Microalgal and bacterial growth was measured. The growth parameters for diatoms showed that the significantly highest cell concentration was for C. muelleri (3.15 x106 cells mL-1) and the lowest values to C. calcitrans (2.98 x106 cells mL-1). The significantly highest growth rate was for C. calcitrans (0.77 divisions per day), and the lowest values for Chaetoceros sp. (0.60 divisions per day). The growth parameters for heterotrophic bacteria showed that the significantly highest bacterial load was for Chaetoceros sp. (19.16 x106 CFU (Colony-Forming Units) mL-1) and the lowest values were for C. calcitrans (12.23 x106 CFU mL-1). The growth rate of the heterotrophic bacteria present in Chaetoceros cultures was similar among the three studied species. Streptomycin® and sulfate G41® produced a partial reduction of bacterial load. The most effective treatment for all three species was the use of an antibiotic mix composed of ampicillin® (250 μg mL-1), kanamycin® (200 μg mL-1), neomycin® (50 μg mL-1), and streptomycin® (100 μg mL-1) for three days. The mix prepared with the highest antibiotic concentration produced a reduction of bacteria (100%) for three days; however, it also induced a significant reduction of the growth of the three Chaetoceros species.


2021 ◽  
Vol 4 (2) ◽  
pp. 35-38
Author(s):  
Hussaini Shettima ◽  
Ibrahim Alkali Allamin ◽  
Nasir Halima ◽  
Haruna Yahya Ismail ◽  
Yusuf Musa

The study was conducted to determine the distribution of hydrocarbon utilizing bacteria in spent engine oil (SEO) contaminated soil. Five mechanical workshops within Maiduguri Metropolis. Five bulk soil sample comprising of one each of the five sites; the sites are Leventis Area on Kashim Ibrahim Way, Damboa Raod, Boiler (commonly called Bola) near Maiduguri Monday Market, Ngomari, on Kano Road, and 1000 Housing Estate, also on Kano Road. Nutrient agar was used, or isolation and enumeration total heterotrophic bacteria and Mineral salt agar was used for the isolation and enumeration of hydrocarbon utilizing bacteria. The result shows THB (92.0x104) at Damboa road (DR) to as higher and (78.8x104) at Bola area (BL) while HUB (2.0x104) at Damboa road (DR) and as high as (9.3x104) at Bola area (BL). The bacterial species isolated were species of Bacillus licheniformis, Bacillus subtilis, Bacillus coagulans, Bacillus alvei, Bacillus cereus, Bacillus lentus other are Pseudomonas aeruginosa, Klebsiella pneumonia. Bacillus licheniformis, and Bacillus subtilis are the most occurring bacterial isolates identified. The ability of those bacterial isolate to degrade hydrocarbon buoyantly will help in remediation of oil polluted environments.


Sign in / Sign up

Export Citation Format

Share Document