riftia pachyptila
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 12)

H-INDEX

30
(FIVE YEARS 2)

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Junli Zhang ◽  
Guoxia Liu ◽  
Alonso I. Carvajal ◽  
Robert H. Wilson ◽  
Zhen Cai ◽  
...  

AbstractRibulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), the key CO2-fixing enzyme in photosynthesis, is notorious for its low carboxylation. We report a highly active and assembly-competent Form II Rubisco from the endosymbiont of a deep-sea tubeworm Riftia pachyptila (RPE Rubisco), which shows a 50.5% higher carboxylation efficiency than that of a high functioning Rubisco from Synechococcus sp. PCC7002 (7002 Rubisco). It is a simpler hexamer with three pairs of large subunit homodimers around a central threefold symmetry axis. Compared with 7002 Rubisco, it showed a 3.6-fold higher carbon capture efficiency in vivo using a designed CO2 capture model. The simple structure, high carboxylation efficiency, easy heterologous soluble expression/assembly make RPE Rubisco a ready-to-deploy enzyme for CO2 capture that does not require complex co-expression of chaperones. The chemosynthetic CO2 fixation machinery of chemolithoautotrophs, CO2-fixing endosymbionts, may be more efficient than previously realized with great potential for next-generation microbial CO2 sequestration platforms.


2021 ◽  
Author(s):  
Andre Luiz de Oliveira ◽  
Jessica Mitchell ◽  
Peter Girguis ◽  
Monika Bright

The mutualism between the giant tubeworm Riftia pachyptila and its endosymbiont Candidatus Endoriftia persephone has been extensively researched over the past 40 years. However, the lack of the host whole genome information has impeded the full comprehension of the genotype/phenotype interface in Riftia. Here we described the high-quality draft genome of Riftia, its complete mitogenome, and tissue-specific transcriptomic data. The Riftia genome presents signs of reductive evolution, with gene family contractions exceeding expansions. Expanded gene families are related to sulphur metabolism, detoxification, anti-oxidative stress, oxygen transport, immune system, and lysosomal digestion, reflecting evolutionary adaptations to the vent environment and endosymbiosis. Despite the derived body plan, the developmental gene repertoire in the gutless tubeworm is extremely conserved with the presence of a near intact and complete Hox cluster. Gene expression analyses establishes that the trophosome is a multi-functional organ marked by intracellular digestion of endosymbionts, storage of excretory products and haematopoietic functions. Overall, the plume and gonad tissues both in contact to the environment harbour highly expressed genes involved with cell cycle, programmed cell death, and immunity indicating a high cell turnover and defence mechanisms against pathogens. We posit that the innate immune system plays a more prominent role into the establishment of the symbiosis during the infection in the larval stage, rather than maintaining the symbiostasis in the trophosome. This genome bridges four decades of physiological research in Riftia, whilst simultaneously provides new insights into the development, whole organism functions and evolution in the giant tubeworm.


Author(s):  
Juliana M. Leonard ◽  
Jessica Mitchell ◽  
Roxanne A. Beinart ◽  
Jennifer A. Delaney ◽  
Jon G. Sanders ◽  
...  

Genome and proteome data predict the presence of both the reductive citric acid cycle (rCAC; also called the reductive tricarboxylic acid cycle) and Calvin-Benson-Bassham cycle (CBB) in “ Candidatus Endoriftia persephonae”, the autotrophic sulfur-oxidizing bacterial endosymbiont from giant hydrothermal vent tubeworm Riftia pachyptila. We tested whether these cycles were differentially induced by sulfide supply, since the synthesis of biosynthetic intermediates by the rCAC is less energetically expensive than the CBB. R. pachyptila were incubated under in situ conditions in high-pressure aquaria under low (28-40 μmol hr −1 ) or high (180 - 276 μmol hr −1 ) rates of sulfide supply. Symbiont-bearing trophosome samples excised from R. pachyptila maintained under either condition were capable of similar rates of CO 2 fixation. Activities of rCAC enzyme ATP-dependent citrate lyase and CBB enzyme RubisCO did not differ between the two conditions, though transcript abundances for ATP-dependent citrate lyase were 4 to 5-fold higher under low sulfide conditions. δ 13 C values of internal dissolved inorganic carbon pools were variable, and did not correlate with sulfide supply rate. In samples taken from freshly collected R. pachyptila, δ 13 C values of lipids fell between those collected for organisms using either the rCAC or CBB cycles exclusively. These observations are consistent with co-occurring activities of rCAC and CBB cycles in this symbiosis. IMPORTANCE Previous to this study, the activities of the rCAC and CBB in R. pachyptila had largely been inferred from –omics studies of R. pachyptila without direct assessment of in situ conditions prior to collection. In this study, R. pachyptila were maintained and monitored in high-pressure aquaria prior to measuring their CO 2 -fixation parameters. Results suggest that ranges in sulfide concentrations similar to those experienced in situ do not exert a strong influence on the relative activities of the rCAC and CBB. This observation highlights the importance of further study of this symbiosis and other organisms with multiple CO 2 -fixing pathways, which recent genomics and biochemical studies suggest are likely to be more prevalent than anticipated.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fan Yang ◽  
Junli Zhang ◽  
Zhen Cai ◽  
Jie Zhou ◽  
Yin Li

AbstractThe oxygenase activity of Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) converts ribulose-1,5-bisphosphate (RuBP) into 2-phosphoglycolate, which in turn channels into photorespiration, resulting in carbon and energy loss in higher plants. We observed that glycolate can be accumulated extracellularly when two genes encoding the glycolate dehydrogenase of cyanobacteria Synechocystis sp. PCC 6803 were inactivated. This inspired us to explore the oxygenase function of Rubisco for production of glycolate, an important industrial chemical, from CO2 by engineered cyanobacteria. Since the oxygenase activity of Rubisco is generally low in CO2-rich carboxysome of cyanobacteria, we introduced Form II Rubisco, which cannot be assembled in carboxysome, into the cytoplasm of cyanobacteria. Heterologous expression of a Form II Rubisco from endosymbiont of tubeworm Riftia pachyptila (RPE Rubisco) significantly increased glycolate production. We show that the RPE Rubisco is expressed in the cytoplasm. Glycolate production increased upon addition of NaHCO3 but decreased upon supplying CO2. The titer of glycolate reached 2.8 g/L in 18 days, a 14-fold increase compared with the initial strain with glycolate dehydrogenase inactivated. This is also the highest glycolate titer biotechnologically produced from CO2 ever reported. Photosynthetic production of glycolate demonstrated the oxygenase activity of Form II Rubisco can be explored for production of chemicals from CO2.


2021 ◽  
Author(s):  
Fan Yang ◽  
Junli Zhang ◽  
Zhen Cai ◽  
Jie Zhou ◽  
Yin Li

Abstract The oxygenase activity of Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) converts ribulose-1,5-bisphosphate (RuBP) into 2-phosphoglycolate, which in turn channels into photorespiration, resulting in carbon and energy loss in higher plants. We observed that glycolate can be accumulated extracellularly when two genes encoding the glycolate dehydrogenase of cyanobacteria Synechocystis sp. PCC 6803 were inactivated. This inspired us to explore the oxygenase function of Rubisco for production of glycolate, an important industrial chemical, from CO2 by engineered cyanobacteria. Since the oxygenase activity of Rubisco is generally low in CO2-rich carboxysome of cyanobacteria, we introduced Form II Rubisco, which cannot be assembled in carboxysome, into the cytoplasm of cyanobacteria. Heterologous expression of a Form II Rubisco from endosymbiont of tubeworm Riftia pachyptila (RPE Rubisco) significantly increased glycolate production. We show that the RPE Rubisco is expressed in the cytoplasm. Glycolate production increased upon addition of NaHCO3 but decreased upon supplying CO2. The titer of glycolate reached 2.8 g/L in 18 days, a 14-fold increase compared with the initial strain with glycolate dehydrogenase inactivated. This is also the highest glycolate titer biotechnologically produced from CO2 ever reported. Photosynthetic production of glycolate demonstrated the oxygenase activity of Form II Rubisco can be explored for production of chemicals from CO2.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Tjorven Hinzke ◽  
Manuel Kleiner ◽  
Mareike Meister ◽  
Rabea Schlüter ◽  
Christian Hentschker ◽  
...  

The hydrothermal vent tubeworm Riftia pachyptila hosts a single 16S rRNA phylotype of intracellular sulfur-oxidizing symbionts, which vary considerably in cell morphology and exhibit a remarkable degree of physiological diversity and redundancy, even in the same host. To elucidate whether multiple metabolic routes are employed in the same cells or rather in distinct symbiont subpopulations, we enriched symbionts according to cell size by density gradient centrifugation. Metaproteomic analysis, microscopy, and flow cytometry strongly suggest that Riftia symbiont cells of different sizes represent metabolically dissimilar stages of a physiological differentiation process: While small symbionts actively divide and may establish cellular symbiont-host interaction, large symbionts apparently do not divide, but still replicate DNA, leading to DNA endoreduplication. Moreover, in large symbionts, carbon fixation and biomass production seem to be metabolic priorities. We propose that this division of labor between smaller and larger symbionts benefits the productivity of the symbiosis as a whole.


Author(s):  
Nadezhda Rimskaya-Korsakova ◽  
Diego Fontaneto ◽  
Sergey Galkin ◽  
Vladimir Malakhov ◽  
Alejandro Martínez

Abstract The tubeworm Riftia pachyptila is a key primarily producer in hydrothermal vent communities due to the symbiosis with sulphur-oxidizing bacteria, which provide nourishment to the worm from sulphides, oxygen and carbon dioxide. These substances diffuse from the vent water into the bloodstream of the worm through their tentacular crowns, and then to the bacteria, hosted in a specialized organ of the worm, called a trophosome. The uptake rates of these substances depend on the surface/volume relationship of the tentacles. We here describe two morphotypes, ‘fat’ and ‘slim’, respectively, from the basalt sulphide-rich vents at 9 °N and 21 °N at the East Pacific Rise, and the highly sedimented, sulphide-poor vents at 27 °N in the Guaymas Basin. The ‘fat’ morphotype has a thicker body and tube, longer trunk and smaller tentacular crowns, whereas the ‘slim’ morphotype has shorter trunk, thinner body and tube, and presents longer tentacular crowns and has a higher number of tentacular lamellae. Given the dependence on sulphides for the growth of R. pachyptila, as well as high genetic connectivity of the worm’s populations along the studied localities, we suggest that such morphological differences are adaptive and selected to keep the sulphide uptake near to the optimum values for the symbionts. ‘Fat’ and ‘slim’ morphotypes are also found in the vestimentiferan Ridgeia piscesae in similar sulphide-rich and poor environments in the northern Pacific.


2020 ◽  
Author(s):  
Tjorven Hinzke ◽  
Manuel Kleiner ◽  
Mareike Meister ◽  
Rabea Schlüter ◽  
Christian Hentschker ◽  
...  

AbstractThe hydrothermal vent tube worm Riftia pachyptila lives in intimate symbiosis with intracellular sulfur-oxidizing gammaproteobacteria. Although the symbiont population consists of a single 16S rRNA phylotype, bacteria in the same host animal exhibit a remarkable degree of metabolic diversity: They simultaneously utilize two carbon fixation pathways and various energy sources and electron acceptors. Whether these multiple metabolic routes are employed in the same symbiont cells, or rather in distinct symbiont subpopulations, was unclear. As Riftia symbionts vary considerably in cell size and shape, we enriched individual symbiont cell sizes by density gradient centrifugation in order to test whether symbiont cells of different sizes show different metabolic profiles. Metaproteomic analysis and statistical evaluation using clustering and random forests, supported by microscopy and flow cytometry, strongly suggest that Riftia symbiont cells of different sizes represent metabolically dissimilar stages of a physiological differentiation process: Small symbionts actively divide and may establish cellular symbiont-host interaction, as indicated by highest abundance of the cell division key protein FtsZ and highly abundant chaperones and porins in this initial phase. Large symbionts, on the other hand, apparently do not divide, but still replicate DNA, leading to DNA endoreduplication. Highest abundance of enzymes for CO2 fixation, carbon storage and biosynthesis in large symbionts indicates that in this late differentiation stage the symbiont’s metabolism is efficiently geared towards the production of organic material. We propose that this division of labor between smaller and larger symbionts benefits the productivity of the symbiosis as a whole.


mBio ◽  
2019 ◽  
Vol 10 (6) ◽  
Author(s):  
Tjorven Hinzke ◽  
Manuel Kleiner ◽  
Corinna Breusing ◽  
Horst Felbeck ◽  
Robert Häsler ◽  
...  

ABSTRACT The deep-sea tubeworm Riftia pachyptila lacks a digestive system but completely relies on bacterial endosymbionts for nutrition. Although the symbiont has been studied in detail on the molecular level, such analyses were unavailable for the animal host, because sequence information was lacking. To identify host-symbiont interaction mechanisms, we therefore sequenced the Riftia transcriptome, which served as a basis for comparative metaproteomic analyses of symbiont-containing versus symbiont-free tissues, both under energy-rich and energy-limited conditions. Our results suggest that metabolic interactions include nutrient allocation from symbiont to host by symbiont digestion and substrate transfer to the symbiont by abundant host proteins. We furthermore propose that Riftia maintains its symbiont by protecting the bacteria from oxidative damage while also exerting symbiont population control. Eukaryote-like symbiont proteins might facilitate intracellular symbiont persistence. Energy limitation apparently leads to reduced symbiont biomass and increased symbiont digestion. Our study provides unprecedented insights into host-microbe interactions that shape this highly efficient symbiosis. IMPORTANCE All animals are associated with microorganisms; hence, host-microbe interactions are of fundamental importance for life on earth. However, we know little about the molecular basis of these interactions. Therefore, we studied the deep-sea Riftia pachyptila symbiosis, a model association in which the tubeworm host is associated with only one phylotype of endosymbiotic bacteria and completely depends on this sulfur-oxidizing symbiont for nutrition. Using a metaproteomics approach, we identified both metabolic interaction processes, such as substrate transfer between the two partners, and interactions that serve to maintain the symbiotic balance, e.g., host efforts to control the symbiont population or symbiont strategies to modulate these host efforts. We suggest that these interactions are essential principles of mutualistic animal-microbe associations.


2019 ◽  
Vol 86 (1) ◽  
Author(s):  
Jessica H. Mitchell ◽  
Juliana M. Leonard ◽  
Jennifer Delaney ◽  
Peter R. Girguis ◽  
Kathleen M. Scott

ABSTRACT Use of hydrogen gas (H2) as an electron donor is common among free-living chemolithotrophic microorganisms. Given the presence of this dissolved gas at deep-sea hydrothermal vents, it has been suggested that it may also be a major electron donor for the free-living and symbiotic chemolithoautotrophic bacteria that are the primary producers at these sites. Giant Riftia pachyptila siboglinid tubeworms and their symbiotic bacteria (“Candidatus Endoriftia persephone”) dominate many vents in the Eastern Pacific, and their use of sulfide as a major electron donor has been documented. Genes encoding hydrogenase are present in the “Ca. Endoriftia persephone” genome, and proteome data suggest that these genes are expressed. In this study, high-pressure respirometry of intact R. pachyptila and incubations of trophosome homogenate were used to determine whether this symbiotic association could also use H2 as a major electron donor. Measured rates of H2 uptake by intact R. pachyptila in high-pressure respirometers were similar to rates measured in the absence of tubeworms. Oxygen uptake rates in the presence of H2 were always markedly lower than those measured in the presence of sulfide, as was the incorporation of 13C-labeled dissolved inorganic carbon. Carbon fixation by trophosome homogenate was not stimulated by H2, nor was hydrogenase activity detectable in these samples. Though genes encoding [NiFe] group 1e and [NiFe] group 3b hydrogenases are present in the genome and transcribed, it does not appear that H2 is a major electron donor for this system, and it may instead play a role in intracellular redox homeostasis. IMPORTANCE Despite the presence of hydrogenase genes, transcripts, and proteins in the “Ca. Endoriftia persephone” genome, transcriptome, and proteome, it does not appear that R. pachyptila can use H2 as a major electron donor. For many uncultivable microorganisms, omic analyses are the basis for inferences about their activities in situ. However, as is apparent from the study reported here, there are dangers in extrapolating from omics data to function, and it is essential, whenever possible, to verify functions predicted from omics data with physiological and biochemical measurements.


Sign in / Sign up

Export Citation Format

Share Document