scholarly journals Polynomial representations of complete sets of frequency hyperrectangles with prime power dimensions

1993 ◽  
Vol 62 (1) ◽  
pp. 46-65 ◽  
Author(s):  
Stephan J Suchower
Author(s):  
R. H. EGGERMONT ◽  
A. SNOWDEN

AbstractDraisma recently proved that polynomial representations of GL∞ are topologically noetherian. We generalize this result to algebraic representations of infinite rank classical groups.


1977 ◽  
Vol 24 (2) ◽  
pp. 252-256 ◽  
Author(s):  
Edward Spence

AbstractIn this paper the following result is proved. Suppose there exists a C-matrix of order n + 1. Then if n≡1 (mod 4) there exists a Hadamard matrix of order 2nr(n + 1), while if n≡3 (mod 4) there exists a Hadamard matrix of order nr(n + 1) for all r ≧0. If n≡1 (mod 4) is a prime power, the method is adapted to prove the existence of a Hadamard matrix of the Williamson type, of order 2nr(n + 1), for all r ≧0.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Francisca Carrillo-Morales ◽  
Francisco Correa ◽  
Olaf Lechtenfeld

Abstract For the rational quantum Calogero systems of type A1⊕A2, AD3 and BC3, we explicitly present complete sets of independent conserved charges and their nonlinear algebras. Using intertwining (or shift) operators, we include the extra ‘odd’ charges appearing for integral couplings. Formulæ for the energy eigenstates are used to tabulate the low-level wave functions.


2013 ◽  
Vol 46 (48) ◽  
pp. 485303 ◽  
Author(s):  
Jukka Kiukas ◽  
Jussi Schultz
Keyword(s):  

2003 ◽  
Vol 67 (1) ◽  
pp. 115-119
Author(s):  
Alireza Abdollahi

Let c ≥ 0, d ≥ 2 be integers and be the variety of groups in which every d-generator subgroup is nilpotent of class at most c. N.D. Gupta asked for what values of c and d is it true that is locally nilpotent? We prove that if c ≤ 2d + 2d−1 − 3 then the variety is locally nilpotent and we reduce the question of Gupta about the periodic groups in to the prime power exponent groups in this variety.


2011 ◽  
Vol 5 (1) ◽  
pp. 22-36 ◽  
Author(s):  
J.W. Sander ◽  
T. Sander

The energy of a graph is the sum of the moduli of the eigenvalues of its adjacency matrix. We study the energy of integral circulant graphs, also called gcd graphs. Such a graph can be characterized by its vertex count n and a set D of divisors of n such that its vertex set is Zn and its edge set is {{a,b} : a, b ? Zn; gcd(a-b, n)? D}. For an integral circulant graph on ps vertices, where p is a prime, we derive a closed formula for its energy in terms of n and D. Moreover, we study minimal and maximal energies for fixed ps and varying divisor sets D.


Sign in / Sign up

Export Citation Format

Share Document