Fatigue crack propagation through residual stress fields with closure phenomenaBeghini, M. and Bertini, L. Eng. Fract. Mech. 1990 36 (3), 379–387

1991 ◽  
Vol 13 (4) ◽  
pp. 359-359
2015 ◽  
Vol 133 ◽  
pp. 244-254 ◽  
Author(s):  
Jonas Hensel ◽  
Thomas Nitschke-Pagel ◽  
Joana Rebelo-Kornmeier ◽  
Klaus Dilger

Author(s):  
Kota Sugawara ◽  
Hirohito Koya ◽  
Hiroshi Okada ◽  
Yinsheng Li ◽  
Kazuya Osakabe ◽  
...  

In this paper, some results of crack propagation analyses of deep initially semi-elliptical flaws under assumed residual stress fields are presented. The crack propagation analyses were performed by using a software system that has been developed by Okada and his colleagues. It is based on a conventional finite element program but uses the quadratic tetrahedral finite elements to model the structure with the crack. The finite element model with the crack can be generated in an automated manner. The stress-intensity factor computations are performed by using the virtual crack closure-integral method (VCCM) for the quadratic tetrahedral finite element which was also proposed by Okada and his colleagues. The automatic meshing scheme for the crack propagation analyses has also been developed by the authors. By the authors’ previous publication, it was shown that the stress intensity factor of deep semi-elliptical surface flaw under assumed residual stress field reached its maximum value at the mid-depth of the crack. Hence, in present study, in order to investigate the feature of the crack propagation of deep surface cracks, we are conducting crack propagation analyses that can predict the crack extension from each point along the crack front for an arbitrary shaped surface flaw. It can also account for material anisotropy in the crack propagation behavior. Then, the SCC crack propagation analyses for a deep semi-elliptical surface flaw in a plate under assumed residual stress fields are being conducted. The results of the crack propagation analyses suggest that the shapes of the crack after the SCC crack propagation may not be exact semi-elliptic in its shape. In this paper, the analytical procedures and some results are presented. The same analytical procedures can be adopted to perform fatigue crack propagation analyses.


Sign in / Sign up

Export Citation Format

Share Document