tensile residual stress
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 13)

H-INDEX

10
(FIVE YEARS 1)

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2029
Author(s):  
Wei Wang ◽  
Xiang Fang ◽  
Xuanguo Wang ◽  
Michel Andrieux ◽  
Vincent Ji

Punching is the main manufacturing process with high efficiency and machining accuracy used to produce the iron cores of motors. However, it usually introduces residual stress at the cutting edge and affects the magnetic properties of the iron core. Further studies show that the tensile residual stress (TRS) has a negligible effect on the magnetic properties, compared with the compressive stress. The blunt punch tools cause local TRS and the formation of local large plastic deformation (PD) at the cutting edge as the cost. The PD has a more serious effect on the magnetic properties of materials than TRS. Therefore, this study mainly focused on local deformation distribution and the associated microstructure evolution using EBSD (Electron Backscatter Diffraction) and finite element analysis; and the formation mechanism of tensile residual stress during the punching process at the cutting edge of a non-oriented silicon steel after punching with blunt tools, by using nanoindentation and a numerical simulation. The experimental results showed the existence of a specific bending area, a highly deformed area and a large burr at the cutting edge. These direct observations were confirmed with those obtained by the simulation model. Furthermore, the tensile residual stress on the surface was verified through nanoindentation tests and by a numerical simulation. The results indicate also that the formation of a tensile residual stress zone depends especially on the bending area formed during punching with blunt tools.


2021 ◽  
Author(s):  
Anthony Lombardi

Lightweighting has become an important factor in the automotive industry due to stringent government regulations on fuel consumption and increased environmental awareness. Aluminum alloys are 65% lighter than cast iron enabling significant weight reduction. However, there are several significant challenges associated to the use of hypoeutectic Al-Si alloys in engine block applications. This dissertation investigated the factors influencing the susceptibility of in-service cylinder distortion as it is deleterious to engine operating efficiency, leading to environmental (increased carbon emissions) and economic (expensive recalls) repercussions. The initial segment of this dissertation sought to quantitatively confirm the cause of cylinder distortion by investigating distorted and undistorted service tested engine blocks. This analysis involved measurement of macro-distortion using a co-ordinate measuring machine, in-depth microstructural analysis, measurement of tensile properties, and residual stress mapping along the length of the cylinder bores (neutron diffraction). Upon determining the cause of distortion, the second phase of this project optimized the solution heat treatment parameters to mitigate future distortion in the engine blocks. This optimization was carried out by varying heat treatment parameters to maximize engine block strength. In addition, a pioneering application of in-situ neutron diffraction, along with a unique engine heating system, was used to develop a time-dependent correlation of residual stress relief during heat treatment, assisting in process optimization. The results indicate that the distorted engine block had high tensile residual stress, specifically at cylinder depths greater than 30 mm, while the undistorted block had mainly compressive stress. The maximum distortion occurred near the center portion of the cylinder (~60 mm), which had a combination of coarse microstructure (lower strength) and high tensile residual stress. As such,distortion can be prevented via maximization of strength and reduction in tensile residual stress. Lab scale castings and in-situ neutron diffraction were used to successfully develop an optimal heat treatment process to increase engine block integrity. These experiments found that solution heat treatment at 500 °C for 2 h increased tensile yield strength by 15-20% over engines produced using the current process. Furthermore, tensile residual stress was completely relieved by this heat treatment, reducing the susceptibility to in-service distortion. Solutionizing at temperatures above 500 °C was deemed unsuitable for engine block production due to incipient melting, which deteriorates strength.


2021 ◽  
Author(s):  
Anthony Lombardi

Lightweighting has become an important factor in the automotive industry due to stringent government regulations on fuel consumption and increased environmental awareness. Aluminum alloys are 65% lighter than cast iron enabling significant weight reduction. However, there are several significant challenges associated to the use of hypoeutectic Al-Si alloys in engine block applications. This dissertation investigated the factors influencing the susceptibility of in-service cylinder distortion as it is deleterious to engine operating efficiency, leading to environmental (increased carbon emissions) and economic (expensive recalls) repercussions. The initial segment of this dissertation sought to quantitatively confirm the cause of cylinder distortion by investigating distorted and undistorted service tested engine blocks. This analysis involved measurement of macro-distortion using a co-ordinate measuring machine, in-depth microstructural analysis, measurement of tensile properties, and residual stress mapping along the length of the cylinder bores (neutron diffraction). Upon determining the cause of distortion, the second phase of this project optimized the solution heat treatment parameters to mitigate future distortion in the engine blocks. This optimization was carried out by varying heat treatment parameters to maximize engine block strength. In addition, a pioneering application of in-situ neutron diffraction, along with a unique engine heating system, was used to develop a time-dependent correlation of residual stress relief during heat treatment, assisting in process optimization. The results indicate that the distorted engine block had high tensile residual stress, specifically at cylinder depths greater than 30 mm, while the undistorted block had mainly compressive stress. The maximum distortion occurred near the center portion of the cylinder (~60 mm), which had a combination of coarse microstructure (lower strength) and high tensile residual stress. As such,distortion can be prevented via maximization of strength and reduction in tensile residual stress. Lab scale castings and in-situ neutron diffraction were used to successfully develop an optimal heat treatment process to increase engine block integrity. These experiments found that solution heat treatment at 500 °C for 2 h increased tensile yield strength by 15-20% over engines produced using the current process. Furthermore, tensile residual stress was completely relieved by this heat treatment, reducing the susceptibility to in-service distortion. Solutionizing at temperatures above 500 °C was deemed unsuitable for engine block production due to incipient melting, which deteriorates strength.


2020 ◽  
Vol 14 (5) ◽  
pp. 824-834
Author(s):  
Masashi Kurose ◽  
Hiromasa Anahara ◽  
Takeshi Tane ◽  
Yoshihide Kuwabara ◽  
Kenta Aoshima ◽  
...  

During aluminum die-casting, tensile residual stress accumulates on the cavity surface of the die by repeated heating and cooling processes. Recently, to improve productivity, dies with high cycle and longer life have become necessary, and reduction or removal of tensile residual stress can be used to prevent heat cracks that cause mold fracture. Heat treatment is often used for residual stress reduction but a more efficient residual stress reduction method that can be carried out with simpler equipment is required. In this study, the relationship between the residual stress after forced vibration and the amplitude at the time of excitation is investigated by mechanical vibration of the SKD61 die materials and the die-casting mold through the application of forced vibration by an eccentric motor. Residual stress on the surface of each test plate treated by the heat treatment and the surface of mold cavity after excitation is evaluated by the X-ray residual stress measurement. It was found that the residual strain after excitation accumulated in compression as the amplitude of oscillation of the specimen became negative. Residual stress in the excitation direction of the specimens increased in the compression direction due to the excitation, demonstrating the effective stress reduction by the excitation method.


2020 ◽  
Vol 56 (1) ◽  
pp. 50-64
Author(s):  
Tairui Zhang ◽  
Jianzhang Guo ◽  
Weiqiang Wang

In this study, a strain-pattern-based method was proposed to simultaneously determine the uniaxial tensile residual stress and flow property from a single-cycle spherical indentation test. The variation of the plastic zone radius (at the specimen surface) with uniaxial tensile residual stress was analytically investigated by the expanding cavity model. The analysis proved that the circular plastic boundary will be elliptical under the action of uniaxial residual stress (with a shrunken plastic zone radius along the loading direction and an extended plastic zone radius vertical to the loading direction), and this difference can be used to calibrate the magnitude of the residual stress. The analytical result was verified and modified through finite element calculations, after which a set of regression functions for Holloman hardening metals was established for load compensation, proportional limit correction, and hardening exponent calculation. The effectiveness of the method was verified through finite element calculations of spherical indentation tests on 16 Holloman hardening and 6 metals used in engineering applications at different residual stress levels. The verification proved that maximum errors for strength and residual stress calculations are about 10% and 15%, respectively, and the potential of the new proposed method was validated.


Author(s):  
Wei Tang ◽  
Stylianos Chatzidakis ◽  
Roger Miller ◽  
Jian Chen ◽  
Doug Kyle ◽  
...  

Abstract The potential for stress corrosion cracking (SCC) of welded stainless-steel interim storage containers for spent nuclear fuel (SNF) has been identified as a high priority data gap. This paper presents a fusion welding process that was developed for SNF canister repair. Submerged arc welding (SAW) was developed to weld 12.7 mm (0.5 in.) thick 304L stainless steel plates to simulate the initial welds on SNF canisters. The SAW procedure was qualified following ASME Boiler and Pressure Vessel Code requirements. During SAW, the welding temperature was recorded at various locations by using thermocouples. After SAW, weld microstructures were characterized, joint mechanical properties were tested, and the maximum tensile residual stress direction was identified. After SAW procedure qualification, artificial cracks were excavated perpendicular to the maximum tensile residual stress direction in the SAW heat affected zone. Machine cold-wire gas tungsten arc welding (CW-GTAW) was developed and used for repair welding at cracked locations.


Author(s):  
Sagar H. Nikam ◽  
N. K. Jain

Prediction of residual stresses induced by any additive layer manufacturing process greatly helps in preventing thermal cracking and distortion formed in the substrate and deposition material. This paper presents the development of a model for the prediction of residual stresses using three-dimensional finite element simulation (3D-FES) and their experimental validation in a single-track and double-track deposition of Ti-6Al-4V powder on AISI 4130 substrate by the microplasma transferred arc (µ-PTA) powder deposition process. It involved 3D-FES of the temperature distribution and thermal cycles that were validated experimentally using three K-type thermocouples mounted along the deposition direction. Temperature distribution, thermal cycles, and residual stresses are predicted in terms of the µ-PTA process parameters and temperature-dependent properties of substrate and deposition materials. Influence of a number of deposition tracks on the residual stresses is also studied. Results reveal that (i) tensile residual stress is higher at the bonding between the deposition and substrate and attains a minimum value at the midpoint of a deposition track; (ii) maximum tensile residual stress occurs in the substrate material at its interface with deposition track. This primarily causes distortion and thermal cracks; (iii) maximum compressive residual stress occurs approximately at mid-height of the substrate material; and (iv) deposition of a subsequent track relieves tensile residual stress induced by the previously deposited track.


2019 ◽  
Vol 13 (1) ◽  
pp. 4536-4557 ◽  
Author(s):  
K. Azizpour ◽  
H. Moshayedi ◽  
I. Sattari-far

Tensile residual stress is a major issue in integrity of the welded structures. Undesirable tensile residual stress in welding may reduce fracture toughness and fatigue life of welded structures. The low transformation-temperature (LTT) fillers, due to introducing compressive residual stresses caused by prior martensitic transformation, can reduce tensile residual stresses in the weld zone. The effects of using LTT fillers on welding residual stresses of high strength steel sheets are studied and compared with conventional fillers. 3D finite element simulations including coupled thermal-metallurgical-mechanical analyses are developed using SYSWELD software to predict the welding residual stresses. For validation of the finite element model, the residual stresses are measured through hole drilling strain gage method. The results indicate that using the LTT fillers cause a decrease of the longitudinal tensile residual stresses of the weld metal from 554 MPa to 216 MPa in comparison with conventional fillers. The transverse residual stresses of the weld line are changed from tensile 156 MPa to compressive 289 MPa with using LTT fillers instead of conventional fillers.


Sign in / Sign up

Export Citation Format

Share Document