A model for cell receptive fields in the visual striate cortex

1982 ◽  
Vol 20 (4) ◽  
pp. 299-318 ◽  
Author(s):  
J.P. Crettez ◽  
J.C. Simon
10.1038/12199 ◽  
1999 ◽  
Vol 2 (9) ◽  
pp. 825-832 ◽  
Author(s):  
Margaret S. Livingstone ◽  
Doris Y. Tsao

Of the many possible functions of the macaque monkey primary visual cortex (striate cortex, area 17) two are now fairly well understood. First, the incoming information from the lateral geniculate bodies is rearranged so that most cells in the striate cortex respond to specifically oriented line segments, and, second, information originating from the two eyes converges upon single cells. The rearrangement and convergence do not take place immediately, however: in layer IVc, where the bulk of the afferents terminate, virtually all cells have fields with circular symmetry and are strictly monocular, driven from the left eye or from the right, but not both; at subsequent stages, in layers above and below IVc, most cells show orientation specificity, and about half are binocular. In a binocular cell the receptive fields in the two eyes are on corresponding regions in the two retinas and are identical in structure, but one eye is usually more effective than the other in influencing the cell; all shades of ocular dominance are seen. These two functions are strongly reflected in the architecture of the cortex, in that cells with common physiological properties are grouped together in vertically organized systems of columns. In an ocular dominance column all cells respond preferentially to the same eye. By four independent anatomical methods it has been shown that these columns have the form of vertically disposed alternating left-eye and right-eye slabs, which in horizontal section form alternating stripes about 400 μm thick, with occasional bifurcations and blind endings. Cells of like orientation specificity are known from physiological recordings to be similarly grouped in much narrower vertical sheeet-like aggregations, stacked in orderly sequences so that on traversing the cortex tangentially one normally encounters a succession of small shifts in orientation, clockwise or counterclockwise; a 1 mm traverse is usually accompanied by one or several full rotations through 180°, broken at times by reversals in direction of rotation and occasionally by large abrupt shifts. A full complement of columns, of either type, left-plus-right eye or a complete 180° sequence, is termed a hypercolumn. Columns (and hence hypercolumns) have roughly the same width throughout the binocular part of the cortex. The two independent systems of hypercolumns are engrafted upon the well known topographic representation of the visual field. The receptive fields mapped in a vertical penetration through cortex show a scatter in position roughly equal to the average size of the fields themselves, and the area thus covered, the aggregate receptive field, increases with distance from the fovea. A parallel increase is seen in reciprocal magnification (the number of degrees of visual field corresponding to 1 mm of cortex). Over most or all of the striate cortex a movement of 1-2 mm, traversing several hypercolumns, is accompanied by a movement through the visual field about equal in size to the local aggregate receptive field. Thus any 1-2 mm block of cortex contains roughly the machinery needed to subserve an aggregate receptive field. In the cortex the fall-off in detail with which the visual field is analysed, as one moves out from the foveal area, is accompanied not by a reduction in thickness of layers, as is found in the retina, but by a reduction in the area of cortex (and hence the number of columnar units) devoted to a given amount of visual field: unlike the retina, the striate cortex is virtually uniform morphologically but varies in magnification. In most respects the above description fits the newborn monkey just as well as the adult, suggesting that area 17 is largely genetically programmed. The ocular dominance columns, however, are not fully developed at birth, since the geniculate terminals belonging to one eye occupy layer IVc throughout its length, segregating out into separate columns only after about the first 6 weeks, whether or not the animal has visual experience. If one eye is sutured closed during this early period the columns belonging to that eye become shrunken and their companions correspondingly expanded. This would seem to be at least in part the result of interference with normal maturation, though sprouting and retraction of axon terminals are not excluded.


1991 ◽  
Vol 66 (2) ◽  
pp. 505-529 ◽  
Author(s):  
R. C. Reid ◽  
R. E. Soodak ◽  
R. M. Shapley

1. Simple cells in cat striate cortex were studied with a number of stimulation paradigms to explore the extent to which linear mechanisms determine direction selectivity. For each paradigm, our aim was to predict the selectivity for the direction of moving stimuli given only the responses to stationary stimuli. We have found that the prediction robustly determines the direction and magnitude of the preferred response but overestimates the nonpreferred response. 2. The main paradigm consisted of comparing the responses of simple cells to contrast reversal sinusoidal gratings with their responses to drifting gratings (of the same orientation, contrast, and spatial and temporal frequencies) in both directions of motion. Although it is known that simple cells display spatiotemporally inseparable responses to contrast reversal gratings, this spatiotemporal inseparability is demonstrated here to predict a certain amount of direction selectivity under the assumption that simple cells sum their inputs linearly. 3. The linear prediction of the directional index (DI), a quantitative measure of the degree of direction selectivity, was compared with the measured DI obtained from the responses to drifting gratings. The median value of the ratio of the two was 0.30, indicating that there is a significant nonlinear component to direction selectivity. 4. The absolute magnitudes of the responses to gratings moving in both directions of motion were compared with the linear predictions as well. Whereas the preferred direction response showed only a slight amount of facilitation compared with the linear prediction, there was a significant amount of nonlinear suppression in the nonpreferred direction. 5. Spatiotemporal inseparability was demonstrated also with stationary temporally modulated bars. The time course of response to these bars was different for different positions in the receptive field. The degree of spatiotemporal inseparability measured with sinusoidally modulated bars agreed quantitatively with that measured in experiments with stationary gratings. 6. A linear prediction of the responses to drifting luminance borders was compared with the actual responses. As with the grating experiments, the prediction was qualitatively accurate, giving the correct preferred direction but underestimating the magnitude of direction selectivity observed.(ABSTRACT TRUNCATED AT 400 WORDS)


1995 ◽  
Vol 74 (5) ◽  
pp. 2100-2125 ◽  
Author(s):  
D. M. Snodderly ◽  
M. Gur

1. In alert macaque monkeys, multiunit activity is encountered in an alternating sequence of silent and spontaneously active zones as an electrode is lowered through the striate cortex (V1). 2. Individual neurons that are spontaneously active in the dark usually have a maintained discharge in the light. Because both types of discharge occur in the absence of deliberate stimulation, we call them the "ongoing" activity. The zones with ongoing activity correspond to the cytochrome oxidase (CytOx)-rich geniculorecipient layers 4A, 4C, and 6, whereas the adjacent layers 2/3, 4B, and 5 have little ongoing activity. 3. The widths of receptive field activating regions (ARs) are positively correlated with the cells' ongoing activity. Cells with larger ARs are preferentially located in the CytOx-rich (input) layers, and many are unselective for stimulus orientation. However, approximately 90% of the cells in the silent layers are orientation selective, and they often have small ARs. 4. The laminar distribution of selectivity for orientation and direction of movement in alert animals is consistent with earlier results from anesthetized animals, but the laminar distribution of AR widths differs. In alert macaques, the ARs of direction-selective cells in layer 4B and of orientation-selective cells in layer 5 are among the smallest in V1. 5. Our findings indicate that the input layers of V1 (4A, 4C, and 6) have a diversity of AR widths, including large ones. Cortical processing produces receptive fields in some of the output layers (4B and 5) that are restricted to small ARs with high resolution of spatial position. These results imply potent lateral and/or interlaminar interactions in alert animals in early cortical processing. The diversity of AR widths generated in V1 may contribute to detection of fine detail in the presence of contrasting backgrounds--the early stages of figure-ground discrimination.


1984 ◽  
Vol 52 (3) ◽  
pp. 538-552 ◽  
Author(s):  
K. R. Jones ◽  
R. E. Kalil ◽  
P. D. Spear

Rearing cats with esotropia is known to cause a number of deficits in visual behavior tested through the deviated eye. These include a loss of orienting response to stimuli presented in the nasal visual field of the deviated eye, a reduction in visual acuity, and a general reduction in contrast sensitivity at all spatial frequencies. To assess the involvement of the lateral geniculate nucleus (LGN) in these deficits, we measured the following: 1) the visual responsiveness of lamina A1 cells with peripheral (more than 10 degrees from area centralis) receptive fields in three esotropic and three normal cats and 2) the spatial resolution and contrast sensitivity of lamina A X-cells with central (within 5 degrees of the area centralis) receptive fields in six esotropic and six normal cats. For comparison, we also measured LGN X-cell spatial resolutions in four exotropic cats and in two cats raised with an esotropia in one eye and the lids of the other eye sutured shut (MD-estropes). Recordings from the lateral portion of lamina A1 in esotropic cats yielded similar numbers of visually responsive cells with far nasal receptive fields as were seen in normal animals. Peak and mean response rates to a flashing spot also were normal. In addition, no differences were found between esotropes and normals in the percentages of X- and Y-cells encountered. These results suggest that the loss of orienting response to stimuli presented in the nasal field (12, 20) is not due to a loss of neural responses in the LGN of esotropic cats. In addition, they suggest that decreases in cell size in lamina A1 of esotropic cats (13, 36; R. E. Kalil, unpublished observations) are not accompanied by marked functional abnormalities of the cells and that cortical abnormalities ipsilateral to the deviated eye (22) are likely to have their origin within striate cortex itself. Recordings from lamina A cells with receptive fields near area centralis revealed that the average X-cell spatial resolution in esotropes (2.1 cycles/deg) was significantly lower than that in normal cats (3.1 cycles/deg). This reduction was seen in all esotropic cats tested and was due both to an increase in the proportion of X-cells with very low spatial resolution and to a loss of X-cells responding to high spatial frequencies (greater than 3.25 cycles/deg). The average spatial resolution of X-cells driven by the deviated eye in MD-esotropes fell midway between those of esotropes and normals. In exotropes, mean X-cell spatial resolution was normal.(ABSTRACT TRUNCATED AT 400 WORDS)


1976 ◽  
Vol 39 (3) ◽  
pp. 512-533 ◽  
Author(s):  
J. R. Wilson ◽  
S. M. Sherman

1. Receptive-field properties of 214 neurons from cat striate cortex were studied with particular emphasis on: a) classification, b) field size, c) orientation selectivity, d) direction selectivity, e) speed selectivity, and f) ocular dominance. We studied receptive fields located throughtout the visual field, including the monocular segment, to determine how receptivefield properties changed with eccentricity in the visual field.2. We classified 98 cells as "simple," 80 as "complex," 21 as "hypercomplex," and 15 in other categories. The proportion of complex cells relative to simple cells increased monotonically with receptive-field eccenticity.3. Direction selectivity and preferred orientation did not measurably change with eccentricity. Through most of the binocular segment, this was also true for ocular dominance; however, at the edge of the binocular segment, there were more fields dominated by the contralateral eye.4. Cells had larger receptive fields, less orientation selectivity, and higher preferred speeds with increasing eccentricity. However, these changes were considerably more pronounced for complex than for simple cells.5. These data suggest that simple and complex cells analyze different aspects of a visual stimulus, and we provide a hypothesis which suggests that simple cells analyze input typically from one (or a few) geniculate neurons, while complex cells receive input from a larger region of geniculate neurons. On average, this region is invariant with eccentricity and, due to a changing magnification factor, complex fields increase in size with eccentricity much more than do simple cells. For complex cells, computations of this geniculate region transformed to cortical space provide a cortical extent equal to the spread of pyramidal cell basal dendrites.


1997 ◽  
Vol 78 (1) ◽  
pp. 366-382 ◽  
Author(s):  
Earl L. Smith ◽  
Yuzo Chino ◽  
Jinren Ni ◽  
Han Cheng

Smith, Earl L., III, Yuzo Chino, Jinren Ni, and Han Cheng. Binocular combination of contrast signals by striate cortical neurons in the monkey. J. Neurophysiol. 78: 366–382, 1997. With the use of microelectrode recording techniques, we investigated how the contrast signals from the two eyes are combined in individual cortical neurons in the striate cortex of anesthetized and paralyzed macaque monkeys. For a given neuron, the optimal spatial frequency, orientation, and direction of drift for sine wave grating stimuli were determined for each eye. The cell's disparity tuning characteristics were determined by measuring responses as a function of the relative interocular spatial phase of dichoptic stimuli that consisted of the optimal monocular gratings. Binocular contrast summation was then investigated by measuring contrast response functions for optimal dichoptic grating pairs that had left- to right-eye interocular contrast ratios that varied from 0.1 to 10. The goal was to determine the left- and right-eye contrast components required to produce a criterion threshold response. For all functional classes of cortical neurons and for both cooperative and antagonistic binocular interactions, there was a linear relationship between the left- and right-eye contrast components required to produce a threshold response. Thus, for example for cooperative binocular interactions, a reduction in contrast to one eye was counterbalanced by an equivalent increase in contrast to the other eye. These results showed that in simple cells and phase-specific complex cells, the contrast signals from the two eyes were linearly combined at the subunit level before nonlinear rectification. In non-phase-specific complex cells, the linear binocular convergence of contrast signals could have taken place either before or after the rectification process, but before spike generation. In addition, for simple cells, vector analysis of spatial summation showed that the inputs from the two eyes were also combined in a linear manner before nonlinear spike-generating mechanisms. Thus simple cells showed linear spatial summation not only within and between subregions in a given receptive field, but also between the left- and right-eye receptive fields. Overall, the results show that the effectiveness of a stimulus in producing a response reflects interocular differences in the relative balance of inputs to a given cell, however, the eye of origin of a light-evoked signal has no specific consequence.


1974 ◽  
Vol 19 (1) ◽  
Author(s):  
L.H. Mathers ◽  
K.L. Chow ◽  
P.D. Spear ◽  
P. Grobstein

Contrast sensitivity as a function of spatial frequency was determined for 138 neurons in the foveal region of primate striate cortex. The accuracy of three models in describing these functions was assessed by the method of least squares. Models based on difference-of-Gaussians (DOG) functions were shown to be superior to those based on the Gabor function or the second differential of a Gaussian. In the most general case of the DOG models, each subregion of a simple cell’s receptive field was constructed from a single DOG function. All the models are compatible with the classical observation that the receptive fields of simple cells are made up of spatially discrete ‘on’ and ‘off’ regions. Although the DOG-based models have more free parameters, they can account better for the variety of shapes of spatial contrast sensitivity functions observed in cortical cells and, unlike other models, they provide a detailed description of the organization of subregions of the receptive field that is consistent with the physiological constraints imposed by earlier stages in the visual pathway. Despite the fact that the DOG-based models have spatially discrete components, the resulting amplitude spectra in the frequency domain describe complex cells just as well as simple cells. The superiority of the DOG-based models as a primary spatial filter is discussed in relation to popular models of visual processing that use the Gabor function or the second differential of a Gaussian.


Sign in / Sign up

Export Citation Format

Share Document