threshold response
Recently Published Documents


TOTAL DOCUMENTS

169
(FIVE YEARS 24)

H-INDEX

31
(FIVE YEARS 1)

2021 ◽  
Vol 4 ◽  
Author(s):  
Thomas S. Ovenden ◽  
Mike P. Perks ◽  
Toni-Kim Clarke ◽  
Maurizio Mencuccini ◽  
Alistair S. Jump

Many studies quantify short-term drought impact on tree growth relative to pre-drought growth averages. However, fewer studies examine the extent to which droughts of differing severity differentially impact tree growth or shape stand dynamics. Focusing on three droughts in high and low density stands of Pinus sylvestris in Scotland, we calculated pre-drought growth averages using climatically standardized antecedent growth years to assess tree level drought and post-drought growth performance as percentage growth change (PGC). We then used mixed-effects models to understand how droughts of differing severity impact tree growth and calculated indices of growth dominance (Gd), size inequality (Si), and size asymmetry (Sa) to detect changes in stand structure. Mixed-effects model results indicate that the magnitude and duration of the growth reduction during and following the more extreme drought was significantly larger compared to less severe droughts, for which we found limited evidence of drought impact. While no changes in Si or Sa were noted following any drought, we found evidence of a difference in Gd after the most extreme drought in both stand densities indicative of a threshold response, with smaller trees contributing proportionally more to stand growth relative to their size. Under less severe droughts, inter-tree variability may have partially buffered against stand-level growth change, however, a small increase in drought severity was associated with a significant reduction in average tree growth, an increase in the number of trees growing at >2SD below pre-drought levels and a shift in Gd toward smaller trees, indicating that a drought severity threshold in P. sylvestris may have been exceeded.


2021 ◽  
Author(s):  
Kirill Markin ◽  
Artem Trufanov ◽  
Daria Frunza ◽  
Igor Litvinenko ◽  
Dmitriy Tarumov ◽  
...  

Abstract Background: Repetitive transcranial magnetic stimulation (rTMS) is one of high-potential non-pharmacological methods for migraine treatment. The purpose of this study is to objectively evaluate the efficacy of rTMS in patients with migraine based on data from functional magnetic resonance imaging (fMRI). Methods: 19 patients with migraine without aura underwent a 5-day course of rTMS of the ventrolateral prefrontal cortex bilaterally, at 10Hz frequency and 60% of motor threshold response of 900 pulses. Resting-state functional MRI (1.5 T) and battery of tests were carried out for each patient to clarify their diagnosis, qualitative and quantitative characteristics of pain, and associated affective symptoms. Changes in functional connectivity (FC) in the brain’s neural networks before and after the treatment were identified through independent components analysis. Results: Over the course of therapy, we observed an increase in FC of the default mode network within it, with pain system components and with structures of the visual network. We also noted a decrease in FC of the salience network with sensorimotor and visual networks, as well as an increase in FC of the visual network. Besides, we identified 5 patients who did not have a positive response to one rTMS course, presumably because of an increased trend to depressive symptoms and neuroimaging criteria for depressive disorder. Conclusions: Our findings provide evidence of a 70% efficacy of rTMS judging by neuroimaging changes and a decrease in clinical symptoms. Moreover, we identified neuroimaging criteria for the therapy efficacy as well as possible predictors of successful/unsuccessful response to the therapy.


Hydrobiologia ◽  
2021 ◽  
Author(s):  
P. Saffarinia ◽  
K. E. Anderson ◽  
D. B. Herbst

AbstractFreshwater systems are projected to experience increased hydrologic extremes under climate change. To determine how small streams may be impacted by shifts in flow regimes, we experimentally simulated flow loss over the span of three summers in nine 50 m naturally fed stream channels. The aquatic insect community of these streams was sampled before, during, and after experimental drought treatments as well as following one unforeseen flood event. Abundance, richness, and beta diversity were measured as indicators of biotic effects of altered flow regimes. Abundance declined in proportion to flow loss. In contrast, we observed a threshold response in richness where richness did not decrease except in channels where losses of surface flow occurred and disconnected pools remained. The flood reset this pattern, but communities continued their prior trajectories shortly thereafter. Beta diversity partitions suggested no strong compositional shifts, and that the effect of drought was largely experienced uniformly across taxa until flow cessation. Pools served as a refuge, maintaining stable abundance gradients and higher richness longer than riffles. Upon flow resumption, abundance and richness returned to pre-treatment levels within one year. Our results suggest that many taxa present were resistant to drought conditions until loss in surface flow occurred.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Young-Joo Kim ◽  
Junho Park ◽  
Jae Young Lee ◽  
Do-Nyun Kim

AbstractThe ultrasensitive threshold response is ubiquitous in biochemical systems. In contrast, achieving ultrasensitivity in synthetic molecular structures in a controllable way is challenging. Here, we propose a chemomechanical approach inspired by Michell’s instability to realize it. A sudden reconfiguration of topologically constrained rings results when the torsional stress inside reaches a critical value. We use DNA origami to construct molecular rings and then DNA intercalators to induce torsional stress. Michell’s instability is achieved successfully when the critical concentration of intercalators is applied. Both the critical point and sensitivity of this ultrasensitive threshold reconfiguration can be controlled by rationally designing the cross-sectional shape and mechanical properties of DNA rings.


2021 ◽  
pp. 90-105
Author(s):  
Mark Maslin

‘Climate surprises’ assesses the possibility that there are thresholds or tipping points in the climate system that may occur as we warm the planet. Scientists have been concerned about these tipping points over the last three decades. One can examine the way different parts of the climate system respond to climate change with four scenarios. These include linear but delayed response; muted or limited response; delayed and non-linear response; and threshold response. It is worth considering here the melting of the Greenland and/or Western Antarctic ice sheet; the slowing down of the North Atlantic deep ocean circulation; the potential massive release of methane from melting gas hydrates; and the possibility of the Amazon rainforest dieback.


2021 ◽  
Vol 118 (34) ◽  
pp. e2026111118
Author(s):  
Timme Donders ◽  
Konstantinos Panagiotopoulos ◽  
Andreas Koutsodendris ◽  
Adele Bertini ◽  
Anna Maria Mercuri ◽  
...  

The sediment record from Lake Ohrid (Southwestern Balkans) represents the longest continuous lake archive in Europe, extending back to 1.36 Ma. We reconstruct the vegetation history based on pollen analysis of the DEEP core to reveal changes in vegetation cover and forest diversity during glacial–interglacial (G–IG) cycles and early basin development. The earliest lake phase saw a significantly different composition rich in relict tree taxa and few herbs. Subsequent establishment of a permanent steppic herb association around 1.2 Ma implies a threshold response to changes in moisture availability and temperature and gradual adjustment of the basin morphology. A change in the character of G–IG cycles during the Early–Middle Pleistocene Transition is reflected in the record by reorganization of the vegetation from obliquity- to eccentricity-paced cycles. Based on a quantitative analysis of tree taxa richness, the first large-scale decline in tree diversity occurred around 0.94 Ma. Subsequent variations in tree richness were largely driven by the amplitude and duration of G–IG cycles. Significant tree richness declines occurred in periods with abundant dry herb associations, pointing to aridity affecting tree population survival. Assessment of long-term legacy effects between global climate and regional vegetation change reveals a significant influence of cool interglacial conditions on subsequent glacial vegetation composition and diversity. This effect is contrary to observations at high latitudes, where glacial intensity is known to control subsequent interglacial vegetation, and the evidence demonstrates that the Lake Ohrid catchment functioned as a refugium for both thermophilous and temperate tree species.


2021 ◽  
Vol 22 (11) ◽  
pp. 5633
Author(s):  
Marie Claes ◽  
Joana R. F. Santos ◽  
Luca Masin ◽  
Lien Cools ◽  
Benjamin M. Davis ◽  
...  

Despite being one of the most studied eye diseases, clinical translation of glaucoma research is hampered, at least in part, by the lack of validated preclinical models and readouts. The most popular experimental glaucoma model is the murine microbead occlusion model, yet the observed mild phenotype, mixed success rate, and weak reproducibility urge for an expansion of available readout tools. For this purpose, we evaluated various measures that reflect early onset glaucomatous changes in the murine microbead occlusion model. Anterior chamber depth measurements and scotopic threshold response recordings were identified as an outstanding set of tools to assess the model’s success rate and to chart glaucomatous damage (or neuroprotection in future studies), respectively. Both are easy-to-measure, in vivo tools with a fast acquisition time and high translatability to the clinic and can be used, whenever judged beneficial, in combination with the more conventional measures in present-day glaucoma research (i.e., intraocular pressure measurements and post-mortem histological analyses). Furthermore, we highlighted the use of dendritic arbor analysis as an alternative histological readout for retinal ganglion cell density counts.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Chieh-Hsin Wu ◽  
Ming-Kung Wu ◽  
Chun-Ching Lu ◽  
Hung-Pei Tsai ◽  
Ying-Yi Lu ◽  
...  

Resiniferatoxin is an ultrapotent capsaicin analog that mediates nociceptive processing; treatment with resiniferatoxin can cause an inflammatory response and, ultimately, neuropathic pain. Hepatoma-derived growth factor, a growth factor related to normal development, is associated with neurotransmitters surrounding neurons and glial cells. Therefore, the study aims to investigate how blocking hepatoma-derived growth factor affects the inflammatory response in neuropathic pain. Serum hepatoma-derived growth factor protein expression was measured via ELISA. Resiniferatoxin was administrated intraperitoneally to induce neuropathic pain in 36 male Sprague-Dawley rats which were divided into three groups (resiniferatoxin+recombinant hepatoma-derived growth factor antibody group, resiniferatoxin group, and control group) ( n = 12 /group). The mechanical threshold response was tested with calibration forceps. Cell apoptosis was measured by TUNEL assay. Immunofluorescence staining was performed to detect apoptosis of neuron cells and proliferation of astrocytes in the spinal cord dorsal horn. RT-PCR technique and western blot were used to measure detect inflammatory factors and protein expressions. Serum hepatoma-derived growth factor protein expression was higher in the patients with sciatica compared to controls. In resiniferatoxin-group rats, protein expression of hepatoma-derived growth factor was higher than controls. Blocking hepatoma-derived growth factor improved the mechanical threshold response in rats. In dorsal root ganglion, blocking hepatoma-derived growth factor inhibited inflammatory cytokines. In the spinal cord dorsal horn, blocking hepatoma-derived growth factor inhibited proliferation of astrocyte, apoptosis of neuron cells, and attenuated expressions of pain-associated proteins. The experiment showed that blocking hepatoma-derived growth factor can prevent neuropathic pain and may be a useful alternative to conventional analgesics.


2020 ◽  
Vol 117 (47) ◽  
pp. 29478-29486
Author(s):  
Henrik Sadatzki ◽  
Niccolò Maffezzoli ◽  
Trond M. Dokken ◽  
Margit H. Simon ◽  
Sarah M. P. Berben ◽  
...  

Constraining the past sea ice variability in the Nordic Seas is critical for a comprehensive understanding of the abrupt Dansgaard-Oeschger (D-O) climate changes during the last glacial. Here we present unprecedentedly detailed sea ice proxy evidence from two Norwegian Sea sediment cores and an East Greenland ice core to resolve and constrain sea ice variations during four D-O events between 32 and 41 ka. Our independent sea ice records consistently reveal a millennial-scale variability and threshold response between an extensive seasonal sea ice cover in the Nordic Seas during cold stadials and reduced seasonal sea ice conditions during warmer interstadials. They document substantial and rapid sea ice reductions that may have happened within 250 y or less, concomitant with reinvigoration of deep convection in the Nordic Seas and the abrupt warming transitions in Greenland. Our empirical evidence thus underpins the cardinal role of rapid sea ice decline and related feedbacks to trigger abrupt and large-amplitude climate change of the glacial D-O events.


2020 ◽  
Vol 27 (6) ◽  
pp. 1470-1476
Author(s):  
Rajan Plumley ◽  
Yanwen Sun ◽  
Samuel Teitelbaum ◽  
Sanghoon Song ◽  
Takahiro Sato ◽  
...  

X-ray free-electron lasers (X-FELs) present new opportunities to study ultrafast lattice dynamics in complex materials. While the unprecedented source brilliance enables high fidelity measurement of structural dynamics, it also raises experimental challenges related to the understanding and control of beam-induced irreversible structural changes in samples that can ultimately impact the interpretation of experimental results. This is also important for designing reliable high performance X-ray optical components. In this work, X-FEL beam-induced lattice alterations are investigated by measuring the shot-to-shot evolution of near-Bragg coherent scattering from a single crystalline germanium sample. It is shown that X-ray photon correlation analysis of sequential speckle patterns measurements can be used to monitor the nature and extent of lattice rearrangements. Abrupt, irreversible changes are observed following intermittent high-fluence monochromatic X-ray pulses, thus revealing the existence of a threshold response to X-FEL pulse intensity.


Sign in / Sign up

Export Citation Format

Share Document