Effects of strabismus on responsivity, spatial resolution, and contrast sensitivity of cat lateral geniculate neurons

1984 ◽  
Vol 52 (3) ◽  
pp. 538-552 ◽  
Author(s):  
K. R. Jones ◽  
R. E. Kalil ◽  
P. D. Spear

Rearing cats with esotropia is known to cause a number of deficits in visual behavior tested through the deviated eye. These include a loss of orienting response to stimuli presented in the nasal visual field of the deviated eye, a reduction in visual acuity, and a general reduction in contrast sensitivity at all spatial frequencies. To assess the involvement of the lateral geniculate nucleus (LGN) in these deficits, we measured the following: 1) the visual responsiveness of lamina A1 cells with peripheral (more than 10 degrees from area centralis) receptive fields in three esotropic and three normal cats and 2) the spatial resolution and contrast sensitivity of lamina A X-cells with central (within 5 degrees of the area centralis) receptive fields in six esotropic and six normal cats. For comparison, we also measured LGN X-cell spatial resolutions in four exotropic cats and in two cats raised with an esotropia in one eye and the lids of the other eye sutured shut (MD-estropes). Recordings from the lateral portion of lamina A1 in esotropic cats yielded similar numbers of visually responsive cells with far nasal receptive fields as were seen in normal animals. Peak and mean response rates to a flashing spot also were normal. In addition, no differences were found between esotropes and normals in the percentages of X- and Y-cells encountered. These results suggest that the loss of orienting response to stimuli presented in the nasal field (12, 20) is not due to a loss of neural responses in the LGN of esotropic cats. In addition, they suggest that decreases in cell size in lamina A1 of esotropic cats (13, 36; R. E. Kalil, unpublished observations) are not accompanied by marked functional abnormalities of the cells and that cortical abnormalities ipsilateral to the deviated eye (22) are likely to have their origin within striate cortex itself. Recordings from lamina A cells with receptive fields near area centralis revealed that the average X-cell spatial resolution in esotropes (2.1 cycles/deg) was significantly lower than that in normal cats (3.1 cycles/deg). This reduction was seen in all esotropic cats tested and was due both to an increase in the proportion of X-cells with very low spatial resolution and to a loss of X-cells responding to high spatial frequencies (greater than 3.25 cycles/deg). The average spatial resolution of X-cells driven by the deviated eye in MD-esotropes fell midway between those of esotropes and normals. In exotropes, mean X-cell spatial resolution was normal.(ABSTRACT TRUNCATED AT 400 WORDS)

1992 ◽  
Vol 68 (4) ◽  
pp. 1235-1247 ◽  
Author(s):  
D. Lee ◽  
C. Lee ◽  
J. G. Malpeli

1. The cat medial interlaminar nucleus (MIN) receives inputs almost exclusively from tapetal retina, suggesting that the MIN has a special role in dim-light vision. In this study we compared the sensitivities of cells in the MIN with those in layers A and magnocellular C of the lateral geniculate nucleus (LGNd), using drifting sinusoidal gratings to determine contrast thresholds as a function of spatial frequency and retinal adaptation level over the entire scotopic range. 2. About one-half of the cells recorded in the MIN and layer A had brisk responses that could be nulled by properly positioned, counterphased sinusoidal gratings, and were classified as X cells. The rest of the cells in the MIN and layer A, as well as all cells recorded in layer C, were Y cells. 3. MIN cells had higher contrast sensitivity than layer A cells for low spatial frequencies (0.15 cycles/deg and below) over a wide range of adaptation levels, both overall and for separate comparisons within X or Y cells. Layer C Y cells were intermediate in sensitivity between MIN and layer A Y cells. For low spatial frequencies, Y cells as a group were more sensitive than X cells, whereas the reverse was true for high spatial frequencies. 4. These data enable one to determine the lowest adaptation level at which stimuli of a given contrast can be detected for a given structure. At the lowest spatial frequencies, the MIN can function at adaptation levels approximately 1 log unit below layer A, averaged over all stimulus contrasts. In contrast, the tapetum lowers luminance threshold by at most 0.16 log unit. 5. For scotopic conditions and eccentricities within 15 degrees of the area centralis, contrast sensitivity decreases with eccentricity for low spatial frequencies and remains flat or slightly increases for high spatial frequencies. This relationship, which is opposite to that found for photopic vision, is strongest for MIN Y cells. 6. These data support the hypothesis that the retinal conflict between sensitivity and acuity is ameliorated in the CNS through separate thalamic relays with different degrees of afferent convergence. MIN cells have higher luminance sensitivity than layer A cells, but at the expense of acuity. Layer C appears to occupy an intermediate position in this trade-off.


1983 ◽  
Vol 50 (1) ◽  
pp. 240-264 ◽  
Author(s):  
S. C. Mangel ◽  
J. R. Wilson ◽  
S. M. Sherman

We measured response properties of X- and Y-cells from laminae A and A1 of the dorsal lateral geniculate nucleus of monocularly lid-sutured cats at 8, 12, 16, 24, and 52-60 wk of age. Visual stimuli consisted of small spots of light and vertically oriented sine-wave gratings counterphased at a rate of 2 cycles/s. In cats as young as 8 wk of age, nondeprived and deprived neurons could be clearly identified as X-cells or Y-cells with criteria previously established for adult animals. Nonlinear responses of Y-cells from 8- and 12-wk-old cats were often temporally labile; that is, the amplitude of the nonlinear response of nondeprived and deprived cells increased or decreased suddenly. A similar lability was not noted for the linear response component. This phenomenon rarely occurred in older cats. At 8 wk of age, Y-cell proportions (number of Y-cells/total number of cells) in nondeprived and deprived A-laminae were approximately equal. By 12 wk of age and thereafter, the proportion of Y-cells in deprived laminae was significantly lower than that in nondeprived laminae. At no age was there a systematic difference in response properties (spatial resolution, latency to optic chiasm stimulation, etc.) for Y-cells between deprived and nondeprived laminae. Spatial resolution, defined as the highest spatial frequency to which a cell would respond at a contrast of 0.6, was similar for nondeprived and deprived X-cells until 24 wk of age. In these and older cats, the mean spatial resolution of deprived X-cells was lower than that of nondeprived X-cells. This difference was noted first for lamina A1 at 24 wk of age and later for lamina A at 52-60 wk of age. The average latency of X-cells to optic chiasm stimulation was slightly greater in deprived laminae than in nondeprived laminae. No such difference was seen for Y-cells. Cells with poor and inconsistent responses were encountered infrequently but were observed far more often in deprived laminae than in nondeprived laminae. Lid suture appears to affect the development of geniculate X- and Y-cells in very different ways. Not only is the final pattern of abnormalities quite different between these cell groups, but the developmental dynamics of these abnormalities also differ.


1994 ◽  
Vol 11 (6) ◽  
pp. 1059-1076 ◽  
Author(s):  
Jin-Tang Xue ◽  
Charlene B.Y. Kim ◽  
Rodney J. Moore ◽  
Peter D. Spear

AbstractThe superior colliculus (SC) projects to all layers of the cat's lateral geniculate nucleus (LGN) and thus is in a position to influence information transmission through the LGN. We investigated the function of the tecto-geniculate pathway by studying the responses of cat LGN neurons before, during, and after inactivating the SC with microinjections of lidocaine. The LGN cells were stimulated with drifting sine-wave gratings that varied in spatial frequency and contrast. Among 71 LGN neurons that were studied, 53 showed a statistically significant change in response during SC inactivation. Control experiments with mock injections indicated that some changes could be attributed to slow waxing and waning of responsiveness over time. However, this could not account for all of the effects of SC inactivation that were observed. Forty cells showed changes that were attributed to the removal of tecto-geniculate influences. About equal numbers of cells showed increases (22 cells) and decreases (18 cells) in some aspect of their response to visual stimuli during SC inactivation. The proportion of cells that showed tecto-geniculate influences was somewhat higher in the C layers (68% of the cells) than in the A layers (44% of the cells). In addition, among cells that showed a significant change in maximal response to visual stimulation, the change was larger for cells in the C layers (64% average change) than in the A layers (26% average change) and it was larger for W cells (61% average change) than for X and Y cells (29% average change). Nearly all of the X cells that showed changes had an increase in response, and nearly all of the Y cells had a decrease in response. In addition, across all cell classes, 80% of the cells with receptive fields < 15 deg from the area centralis had an increase in response, and 80% of the cells with receptive fields > 15 deg from the area centralis had a decrease in response. None of the LGN cells had significant changes in spatial resolution, and only three cells had changes in optimal spatial frequency. Ten cells had a change in contrast threshold, 25 cells had a change in contrast gain, and 29 cells had a change in the maximal response to a high-contrast stimulus. Thus, our results suggest that the tecto-geniculate pathway has little or no effect on spatial processing by LGN neurons. Rather, the major influence is on maximal response levels and the relationship between response and stimulus contrast. Several hypotheses about the role of the tecto-geniculate pathway in visual behavior are considered.


1989 ◽  
Vol 62 (5) ◽  
pp. 1039-1051 ◽  
Author(s):  
C. A. White ◽  
L. M. Chalupa ◽  
L. Maffei ◽  
M. A. Kirby ◽  
B. Lia

1. Single-cell recordings were made in the magnocellular layer of the dorsal lateral genicule nucleus (dLGN) of five adult cats in which prenatal binocular interactions were interrupted by monocular enucleation at known gestational ages. Three cats (early enucleates) had one eye removed on either embryonic day 44.48, or 49, before retinogeniculate inputs are segregated into uniocular layers. Two other (late enucleates) underwent this procedure on embryonic days 55 and 58, when segregation is well advanced. Responses were compared with those obtained from recordings in the A and A1 layers of the dLGN of seven normal adult cats. 2. Cells were classified as ON or OFF by the use of spots of light and as X or Y based on a test of linearity of spatial summation with the use of counterphased sinusoidal gratings. Receptive-field size and spatial resolution were also obtained. 3. The dLGN of prenatally enucleated cats contains a dorsal magnocellular layer and a ventral parvocellular layer. In early enucleates, only an occasional hint of a cell-sparse interlaminar zone was apparent, located between the magnocellular and parvocellular layers. In late enucleates, a prominent cell-sparse band was observed contralateral to the remaining eye, in a region that would most likely correspond to layer A1 in the normal dLGN. No such cell-sparse band was seen ipsilateral to the remaining eye in late enucleates. 4. Eighty-six X cells and 22 Y cells were studied in the enucleates. Both cell types were found at all depths of the magnocellular layer. All but a few neurons had concentric ON-center or OFF-center receptive fields that were normal in size. The topography of receptive fields also appeared normal. In addition, spatial resolution of X and Y cells was similar in experimental and control animals. 5. In early enucleates there was a higher percentage of X cells and a lower percentage of Y cells than normal. The change in X-to-Y ratio was shown to be because of both a gain in cells with X properties and a loss of cells with Y properties. The distribution of dLGN somal sizes in the early enucleates was comparable with controls, so the change in X-to-Y ratio most likely did not result from an electrode sampling bias. It was suggested that the X-to-Y ratio difference could stem from the abnormalities in retinogeniculate terminal arbors that have been shown to follow early eye removal.(ABSTRACT TRUNCATED AT 400 WORDS)


1989 ◽  
Vol 2 (4) ◽  
pp. 383-389 ◽  
Author(s):  
D. B. Bowling

AbstractUsing two microelectrodes, recordings were made from pairs of like-signed cells at different depths in single layers (A or Al) of the cat's lateral geniculate nucleus (LGN). The cells were chosen to have near or overlapping receptive fields so that they could be stimulated simultaneously with a single spot or bar of light. Under these controlled conditions, paired X cells (n = 32 pairs) showed differences in latency from less than 10 to about 80 ms, but no latency differences were observed between paired Y cells (n = 3 pairs). Within XY pairs (n = 11) the Y cells responded faster than the X cells. A separate analysis of previously reported, singly recorded X cells (n= 131) also showed wide differences in X cell latencies.The results confirm that temporal differences in signalling occur within the X pathway in the cat LGN (Mastronarde, 1981, 1987a; Humphrey & Weller, 1988a) and they show explicitly that the differences occur simultaneously, in single layers and at single retinotopic loci. No consistent relationship was found between timing and depth, but the possibility of weak, depth-dependent trends is considered in the Discussion.


2003 ◽  
Vol 90 (3) ◽  
pp. 1852-1864 ◽  
Author(s):  
Chun-I Yeh ◽  
Carl R. Stoelzel ◽  
Jose-Manuel Alonso

The Y pathway in the cat visual system is traditionally viewed as a single channel that originates in the retina. However, most Y cells from the contralateral retina diverge to innervate two different layers of the lateral geniculate nucleus, suggesting a possible channel split: YC (Y geniculate cell in layer C) and YA (Y geniculate cell in layer A). We tested the functional significance of this anatomical divergence by comparing the response properties of simultaneously recorded YC and YA geniculate cells with overlapping receptive fields. Our results demonstrate that YC and YA cells significantly differ in a large number of temporal and spatial parameters including response latency, response transiency, receptive-field size, and linearity of spatial summation. Furthermore, for some of these parameters, the differences between YC and YA cells are as pronounced as the differences between Y and X cells in layer A. These results along with results from previous studies strongly suggest that Y retinal afferents diverge into two separate channels at the level of the thalamus.


1998 ◽  
Vol 79 (2) ◽  
pp. 922-936 ◽  
Author(s):  
Daeyeol Lee ◽  
Joseph G. Malpeli

Lee, Daeyeol and Joseph G. Malpeli. Effects of saccades on the activity of neurons in the cat lateral geniculate nucleus. J. Neurophysiol. 79: 922–936, 1998. Effects of saccades on individual neurons in the cat lateral geniculate nucleus (LGN) were examined under two conditions: during spontaneous saccades in the dark and during stimulation by large, uniform flashes delivered at various times during and after rewarded saccades made to small visual targets. In the dark condition, a suppression of activity began 200–300 ms before saccade start, peaked ∼100 ms before saccade start, and smoothly reversed to a facilitation of activity by saccade end. The facilitation peaked 70–130 ms after saccade end and decayed during the next several hundred milliseconds. The latency of the facilitation was related inversely to saccade velocity, reaching a minimum for saccades with peak velocity >70–80°/s. Effects of saccades on visually evoked activity were remarkably similar: a facilitation began at saccade end and peaked 50–100 ms later. When matched for saccade velocity, the time courses and magnitudes of postsaccadic facilitation for activity in the dark and during visual stimulation were identical. The presaccadic suppression observed in the dark condition was similar for X and Y cells, whereas the postsaccadic facilitation was substantially stronger for X cells, both in the dark and for visually evoked responses. This saccade-related regulation of geniculate transmission appears to be independent of the conditions under which the saccade is evoked or the state of retinal input to the LGN. The change in activity from presaccadic suppression to postsaccadic facilitation amounted to an increase in gain of geniculate transmission of ∼30%. This may promote rapid central registration of visual inputs by increasing the temporal contrast between activity evoked by an image near the end of a fixation and that evoked by the image immediately after a saccade.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Zhen Ren ◽  
Jiawei Zhou ◽  
Zhimo Yao ◽  
Zhengchun Wang ◽  
Nini Yuan ◽  
...  

Abstract It is well known that, in humans, contrast sensitivity training at high spatial frequency (SF) not only leads to contrast sensitivity improvement, but also results in an improvement in visual acuity as assessed with gratings (direct effect) or letters (transfer effect). However, the underlying neural mechanisms of this high spatial frequency training improvement remain to be elucidated. In the present study, we examined four properties of neurons in primary visual cortex (area 17) of adult cats that exhibited significantly improved acuity after contrast sensitivity training with a high spatial frequency grating and those of untrained control cats. We found no difference in neuronal contrast sensitivity or tuning width (Width) between the trained and untrained cats. However, the trained cats showed a displacement of the cells’ optimal spatial frequency (OSF) to higher spatial frequencies as well as a larger neuronal signal-to-noise ratio (SNR). Furthermore, both the neuronal differences in OSF and SNR were significantly correlated with the improvement of acuity measured behaviorally. These results suggest that striate neurons might mediate the perceptual learning-induced improvement for high spatial frequency stimuli by an alteration in their spatial frequency representation and by an increased SNR.


Contrast sensitivity as a function of spatial frequency was determined for 138 neurons in the foveal region of primate striate cortex. The accuracy of three models in describing these functions was assessed by the method of least squares. Models based on difference-of-Gaussians (DOG) functions were shown to be superior to those based on the Gabor function or the second differential of a Gaussian. In the most general case of the DOG models, each subregion of a simple cell’s receptive field was constructed from a single DOG function. All the models are compatible with the classical observation that the receptive fields of simple cells are made up of spatially discrete ‘on’ and ‘off’ regions. Although the DOG-based models have more free parameters, they can account better for the variety of shapes of spatial contrast sensitivity functions observed in cortical cells and, unlike other models, they provide a detailed description of the organization of subregions of the receptive field that is consistent with the physiological constraints imposed by earlier stages in the visual pathway. Despite the fact that the DOG-based models have spatially discrete components, the resulting amplitude spectra in the frequency domain describe complex cells just as well as simple cells. The superiority of the DOG-based models as a primary spatial filter is discussed in relation to popular models of visual processing that use the Gabor function or the second differential of a Gaussian.


2000 ◽  
Vol 17 (6) ◽  
pp. 871-885 ◽  
Author(s):  
G.T. EINEVOLL ◽  
P. HEGGELUND

Spatial receptive fields of relay cells in dorsal lateral geniculate nucleus (dLGN) have commonly been modeled as a difference of two Gaussian functions. We present alternative models for dLGN cells which take known physiological couplings between retina and dLGN and within dLGN into account. The models include excitatory input from a single retinal ganglion cell and feedforward inhibition via intrageniculate interneurons. Mathematical formulas describing the receptive field and response to circular spot stimuli are found both for models with a finite and an infinite number of ganglion-cell inputs to dLGN neurons. The advantage of these models compared to the common difference-of-Gaussians model is that they, in addition to providing mathematical descriptions of the receptive fields of dLGN neurons, also make explicit contributions from the geniculate circuit. Moreover, the model parameters have direct physiological relevance and can be manipulated and measured experimentally. The discrete model is applied to recently published data (Ruksenas et al., 2000) on response versus spot-diameter curves for dLGN cells and for the retinal input to the cell (S-potentials). The models are found to account well for the results for the X-cells in these experiments. Moreover, predictions from the discrete model regarding receptive-field sizes of interneurons, the amount of center-surround antagonism for interneurons compared to relay cells, and distance between neighboring retinal ganglion cells providing input to interneurons, are all compatible with data available in the literature.


Sign in / Sign up

Export Citation Format

Share Document