Three-dimensional bearing capacity analysis of foundations by use of a method of slices

2010 ◽  
Vol 163-167 ◽  
pp. 3391-3400 ◽  
Author(s):  
Peng Fei Xue ◽  
Da Ling Mao ◽  
Jin Feng Wang

During the service process of a P.C. bridge, the mechanical properties of materials (including concrete and steel) will deteriorate, and eventually result in the decrease of ultimate bearing capacity. Considering it’s structural behavior, degenerate solid elements were used to set up a three-dimensional model. By taking prestressed reinforcement as a part of structure, the equivalent nodal load was provided to calculate the effect of tensioning bars. The T.L. method was adopted to consider the geometric nonlinear effect. The Ohtani & Chen model was used to simulate the concrete material nonlinear behavior, and for prestressed steel strand and common reinforced, linear hardening and ideal elastoplastic model were adopted respectively. A P.C. continuous rigid frame bridge was employed for the case study, on the basis of material performance deterioration, the ultimate bearing capacity analysis of P.C. bridge structure was carried out. The results show that material deterioration has great impact on ultimate load capacity of structure: the load factor on limit state dropped rapidly from 13.9085 at t=0a to 7.8265 at t=100a, the corresponding safe index decreased from 2.265 to 1.581, and brittle characteristics was aggravated at the same time.


Sign in / Sign up

Export Citation Format

Share Document