Inhibition of renal sympathetic nerve activity by electrical stimulation of the hypothalamic paraventricular nucleus in anesthetized rats

1987 ◽  
Vol 21 (1) ◽  
pp. 83-86 ◽  
Author(s):  
H. Kannan ◽  
A. Niijima ◽  
H. Yamashita
2007 ◽  
Vol 293 (1) ◽  
pp. R178-R184 ◽  
Author(s):  
Baohan Pan ◽  
Matthew R. Zahner ◽  
Ewa Kulikowicz ◽  
Lawrence P. Schramm

Sympathetic preganglionic neurons and interneurons are closely apposed (presumably synapsed upon) by corticospinal tract (CST) axons. Sprouting of the thoracic CST rostral to lumbar spinal cord injuries (SCI) substantially increases the incidence of these appositions. To test our hypothesis that these additional synapses would increase CST control of sympathetic activity after SCI, we measured the effects of electrical stimulation of the CST on renal sympathetic nerve activity (RSNA) and arterial pressure (AP) in α-chloralose-anesthetized rats with either chronically intact or chronically lesioned spinal cords. Stimuli were delivered to the CST at intensities between 25–150 μA and frequencies between 25 and 75 Hz. Stimulation of the CST at the midcervical level decreased RSNA and AP. These decreases were not mediated by direct projections of the CST to the thoracic spinal cord because we could still elicit them by midcervical stimulation after acute lesions of the CST at caudal cervical levels. In contrast, caudal thoracic CST stimulation increased RSNA and AP. Neither the responses to cervical nor thoracic stimulation were affected by chronic lumbar SCI. These data show that the CST mediates decreases in RSNA via a cervical spinal system but excites spinal sympathetic neurons at caudal thoracic levels. Because chronic lumber spinal cord injury affected responses evoked from neither the cervical nor thoracic CST, we conclude that lesion-induced or regeneration-induced formation of new synapses between the CST and sympathetic neurons may not affect cardiovascular regulation.


2009 ◽  
Vol 297 (5) ◽  
pp. R1364-R1374 ◽  
Author(s):  
Hong Zheng ◽  
Yi-Fan Li ◽  
Wei Wang ◽  
Kaushik P. Patel

Chronic heart failure (HF) is characterized by increased sympathetic drive. Enhanced angiotensin II (ANG II) activity may contribute to the increased sympathoexcitation under HF condition. The present study examined sympathoexcitation by 1) the effects of ANG II in the paraventricular nucleus (PVN) on renal sympathetic nerve activity (RSNA), and 2) the altered ANG II type 1 (AT1) receptor expression during HF. Left coronary artery ligation was used to induce HF. In the anesthetized Sprague-Dawley rats, microinjection of ANG II (0.05–1 nmol) into the PVN increased RSNA, mean arterial pressure (MAP), and heart rate (HR) in both sham-operated and HF rats. The responses of RSNA and HR were significantly enhanced in rats with HF compared with sham rats (RSNA: 64 ± 8% vs. 33 ± 4%, P < 0.05). Microinjection of AT1 receptor antagonist losartan into the PVN produced a decrease of RSNA, MAP, and HR in both sham and HF rats. The RSNA and HR responses to losartan in HF rats were significantly greater (RSNA: −25 ± 4% vs. −13 ± 1%, P < 0.05). Using RT-PCR and Western blot analysis, we found that there were significant increases in the AT1 receptor mRNA (Δ186 ± 39%) and protein levels (Δ88 ± 20%) in the PVN of rats with HF ( P < 0.05). The immunofluorescence of AT1 receptors was significantly higher in the PVN of rats with HF. These data support the conclusion that an increased angiotensinergic activity on sympathetic regulation, due to the upregulation of ANG II AT1 receptors within the PVN, may contribute to the elevated sympathoexcitation that is observed during HF.


2004 ◽  
Vol 286 (5) ◽  
pp. H1706-H1711 ◽  
Author(s):  
Lie Gao ◽  
Zhen Zhu ◽  
Irving H. Zucker ◽  
Wei Wang

It is well known that cardiac sympathetic afferent reflexes contribute to increases in sympathetic outflow and that sympathetic activity can antagonize arterial baroreflex function. In this study, we tested the hypothesis that in normal rats, chemical and electrical stimulation of cardiac sympathetic afferents results in a decrease in the arterial baroreflex function by increasing sympathetic nerve activity. Under α-chloralose (40 mg/kg) and urethane (800 mg/kg ip) anesthesia, renal sympathetic nerve activity, mean arterial pressure, and heart rate were recorded. The arterial baroreceptor reflex was evaluated by infusion of nitroglycerin (25 μg iv) and phenylephrine (10 μg iv). Left ventricular epicardial application of capsaicin (0.4 μg in 2 μl) blunted arterial baroreflex function by 46% (maximum slope 3.5 ± 0.3 to 1.9 ± 0.2%/mmHg, P < 0.01). When the central end of the left cardiac sympathetic nerve was electrically stimulated (7 V, 1 ms, 20 Hz), the sensitivity of the arterial baroreflex was similarly decreased by 42% (maximum slope 3.2 ± 0.3 to 1.9 ± 0.4%/mmHg; P < 0.05). Pretreatment with intracerebroventricular injection of losartan (500 nmol in 1 μl of artificial cerebrospinal fluid) completely prevented the impairment of arterial baroreflex function induced by electrical stimulation of the central end of the left cardiac sympathetic nerve (maximum slope 3.6 ± 0.4 to 3.1 ± 0.5%/mmHg). These results suggest that the both chemical and electrical stimulation of the cardiac sympathetic afferents reduces arterial baroreflex sensitivity and the impairment of arterial baroreflex function induced by cardiac sympathetic afferent stimulation is mediated by central angiotensin type 1 receptors.


Sign in / Sign up

Export Citation Format

Share Document