corticospinal tract
Recently Published Documents


TOTAL DOCUMENTS

1156
(FIVE YEARS 255)

H-INDEX

79
(FIVE YEARS 7)

2021 ◽  
pp. 154596832110684
Author(s):  
Kaori L. Ito ◽  
Bokkyu Kim ◽  
Jingchun Liu ◽  
Surjo R. Soekadar ◽  
Carolee Winstein ◽  
...  

Lesion load of the corticospinal tract (CST-LL), a measure of overlap between a stroke lesion and the CST, is one of the strongest predictors of motor outcomes following stroke. CST-LL is typically calculated by using a probabilistic map of the CST originating from the primary motor cortex (M1). However, higher order motor areas also have projections that contribute to the CST and motor control. In this retrospective study, we examined whether evaluating CST-LL from additional motor origins is more strongly associated with post-stroke motor severity than using CST-LL originating from M1 only. We found that lesion load to both the ventral premotor (PMv) cortex and M1 were more strongly related to stroke motor severity indexed by Fugl-Meyer Assessment cut-off scores than CST-LL of M1 alone, suggesting that higher order motor regions add clinical relevance to motor impairment.


2021 ◽  
Vol 118 (52) ◽  
pp. e2113192118
Author(s):  
Alzahraa Amer ◽  
Jianxun Xia ◽  
Michael Smith ◽  
John H. Martin

Although it is well known that activity-dependent motor cortex (MCX) plasticity produces long-term potentiation (LTP) of local cortical circuits, leading to enhanced muscle function, the effects on the corticospinal projection to spinal neurons has not yet been thoroughly studied. Here, we investigate a spinal locus for corticospinal tract (CST) plasticity in anesthetized rats using multichannel recording of motor-evoked, intraspinal local field potentials (LFPs) at the sixth cervical spinal cord segment. We produced LTP by intermittent theta burst electrical stimulation (iTBS) of the wrist area of MCX. Approximately 3 min of MCX iTBS potentiated the monosynaptic excitatory LFP recorded within the CST termination field in the dorsal horn and intermediate zone for at least 15 min after stimulation. Ventrolaterally, in the spinal cord gray matter, which is outside the CST termination field in rats, iTBS potentiated an oligosynaptic negative LFP that was localized to the wrist muscle motor pool. Spinal LTP remained robust, despite pharmacological blockade of iTBS-induced LTP within MCX using MK801, showing that activity-dependent spinal plasticity can be induced without concurrent MCX LTP. Pyramidal tract iTBS, which preferentially activates the CST, also produced significant spinal LTP, indicating the capacity for plasticity at the CST–spinal interneuron synapse. Our findings show CST monosynaptic LTP in spinal interneurons and demonstrate that spinal premotor circuits are capable of further modifying descending MCX control signals in an activity-dependent manner.


2021 ◽  
Vol 11 ◽  
Author(s):  
Andrey Zhylka ◽  
Nico Sollmann ◽  
Florian Kofler ◽  
Ahmed Radwan ◽  
Alberto De Luca ◽  
...  

While the diagnosis of high-grade glioma (HGG) is still associated with a considerably poor prognosis, neurosurgical tumor resection provides an opportunity for prolonged survival and improved quality of life for affected patients. However, successful tumor resection is dependent on a proper surgical planning to avoid surgery-induced functional deficits whilst achieving a maximum extent of resection (EOR). With diffusion magnetic resonance imaging (MRI) providing insight into individual white matter neuroanatomy, the challenge remains to disentangle that information as correctly and as completely as possible. In particular, due to the lack of sensitivity and accuracy, the clinical value of widely used diffusion tensor imaging (DTI)-based tractography is increasingly questioned. We evaluated whether the recently developed multi-level fiber tracking (MLFT) technique can improve tractography of the corticospinal tract (CST) in patients with motor-eloquent HGGs. Forty patients with therapy-naïve HGGs (mean age: 62.6 ± 13.4 years, 57.5% males) and preoperative diffusion MRI [repetition time (TR)/echo time (TE): 5000/78 ms, voxel size: 2x2x2 mm3, one volume at b=0 s/mm2, 32 volumes at b=1000 s/mm2] underwent reconstruction of the CST of the tumor-affected and unaffected hemispheres using MLFT in addition to deterministic DTI-based and deterministic constrained spherical deconvolution (CSD)-based fiber tractography. The brain stem was used as a seeding region, with a motor cortex mask serving as a target region for MLFT and a region of interest (ROI) for the other two algorithms. Application of the MLFT method substantially improved bundle reconstruction, leading to CST bundles with higher radial extent compared to the two other algorithms (delineation of CST fanning with a wider range; median radial extent for tumor-affected vs. unaffected hemisphere – DTI: 19.46° vs. 18.99°, p=0.8931; CSD: 30.54° vs. 27.63°, p=0.0546; MLFT: 81.17° vs. 74.59°, p=0.0134). In addition, reconstructions by MLFT and CSD-based tractography nearly completely included respective bundles derived from DTI-based tractography, which was however favorable for MLFT compared to CSD-based tractography (median coverage of the DTI-based CST for affected vs. unaffected hemispheres – CSD: 68.16% vs. 77.59%, p=0.0075; MLFT: 93.09% vs. 95.49%; p=0.0046). Thus, a more complete picture of the CST in patients with motor-eloquent HGGs might be achieved based on routinely acquired diffusion MRI data using MLFT.


2021 ◽  
Author(s):  
Dongwon Kim ◽  
Raziyeh Baghi ◽  
Kyung Koh ◽  
Li-Qun Zhang ◽  
Jong-Moon Hwang

Damage in the corticospinal system following stroke produces imbalance between flexors and extensors in the upper extremity including the fingers, eventually leading to flexion-favored postures. The substitution of the reticospinal tract for the damaged corticospinal tract is known to excessively activate flexors of the fingers while the fingers are voluntarily being extended. Here, we questioned whether the cortical source or/and neural pathways of the flexors and extensors of the fingers are coupled and what factor of impairment influences finger movement. In this study, a total of 7 male participants with hemiplegic stroke conducted isometric flexion and extension at the MCP joints in response to auditory tones. We measured activation and de-activation delays of the flexor and extensor of the MCP joints on the paretic side, as well as, force generation and co-contraction between the flexor and extensor. All participants generated greater torque in the direction of flexion (p=0.017). Regarding co-contraction, coupled activation of the extensor is also made during flexion in the similar way to coupled activation of the flexor made during extension. As opposite to our expectation, we observed that during extension, the extensor showed marginally significantly faster activation (p=0.66) while it showed faster de-activation (p=0.038), in comparison to activation and de-activation of the flexor during flexion. But movement smoothness was not affected by those factors. Our results imply that the cortical source and neural pathway for the extensors of the MCP joints are not coupled with those for the flexors of the MCP joints and extensor weakness mainly contributes to the asymmetry between flexors and extensors.


2021 ◽  
Author(s):  
Dongwon Kim ◽  
Raziyeh Baghi ◽  
Kyung Koh ◽  
Li-Qun Zhang ◽  
Jong-Moon Hwang

Damage in the corticospinal system following stroke produces imbalance between flexors and extensors in the upper extremity including the fingers, eventually leading to flexion-favored postures. The substitution of the reticospinal tract for the damaged corticospinal tract is known to excessively activate flexors of the fingers while the fingers are voluntarily being extended. Here, we questioned whether the cortical source or/and neural pathways of the flexors and extensors of the fingers are coupled and what factor of impairment influences finger movement. In this study, a total of 7 male participants with hemiplegic stroke conducted isometric flexion and extension at the MCP joints in response to auditory tones. We measured activation and de-activation delays of the flexor and extensor of the MCP joints on the paretic side, as well as, force generation and co-contraction between the flexor and extensor. All participants generated greater torque in the direction of flexion (p=0.017). Regarding co-contraction, coupled activation of the extensor is also made during flexion in the similar way to coupled activation of the flexor made during extension. As opposite to our expectation, we observed that during extension, the extensor showed marginally significantly faster activation (p=0.66) while it showed faster de-activation (p=0.038), in comparison to activation and de-activation of the flexor during flexion. But movement smoothness was not affected by those factors. Our results imply that the cortical source and neural pathway for the extensors of the MCP joints are not coupled with those for the flexors of the MCP joints and extensor weakness mainly contributes to the asymmetry between flexors and extensors.


2021 ◽  
pp. 763-771
Author(s):  
Yuichi Akaba ◽  
Ryo Takeguchi ◽  
Ryosuke Tanaka ◽  
Satoru Takahashi

Hereditary spastic paraplegias (HSPs) are rare neurological disorders caused by degeneration of the corticospinal tract. Among the 79 causative genes involved in HSPs, variants in <i>SPAST</i> on chromosome 2p22, which encodes the microtubule-severing protein spastin, are responsible for spastic paraplegia type 4 (SPG4), the most common form of HSPs. SPG4 is characterized by a clinically pure phenotype that is associated with restricted involvement of the corticospinal tract; however, it is often accompanied by additional neurological symptoms such as epilepsy and cognitive impairment. There are few reports regarding the clinical course and treatment of epilepsy associated with SPG4. We describe a 21-year-old male patient with progressive weakness and spasticity of the lower limbs since infancy, which was complicated by epilepsy and cognitive impairment. Magnetic resonance imaging of the brain showed right hippocampal atrophy before the onset of epilepsy. Genetic analysis revealed a novel missense variant (NM_014946.4:c.1330G&#x3e;C, p.Asp444His) in the <i>SPAST</i> gene. At the age of 13, the patient developed focal epilepsy, characterized by focal onset seizures that were preceded by a sensation of chest tightness. Carbamazepine, levetiracetam, and zonisamide were ineffective in controlling the seizures; however, the use of lacosamide in combination with lamotrigine and valproate was highly effective in improving the seizure symptoms and led to the patient being seizure free for at least 2 years. In conclusion, the missense variant in <i>SPAST</i> may cause a complex SPG4 phenotype accompanied by epilepsy and cognitive impairment, suggesting that the clinical manifestations of this condition do not confine to the motor system.


2021 ◽  
Author(s):  
Gustavo Balbinot ◽  
Guijin Li ◽  
Sukhvinder Kalsi-Ryan ◽  
Rainer Abel ◽  
Doris Maier ◽  
...  

Cervical spinal cord injury (SCI) severely impacts widespread bodily functions with extensive impairments for individuals, who prioritize regaining hand function. Although prior work has focused on the recovery at the person-level, the factors determining the recovery potential of individual muscles are poorly understood. There is a need for changing this paradigm in the field by moving beyond person-level classification of residual strength and sacral sparing to a muscle-specific analysis with a focus on the role of corticospinal tract (CST) sparing. The most striking part of human evolution involved the development of dextrous hand use with a respective expansion of the sensorimotor cortex controlling hand movements, which, because of the extensive CST projections, may constitute a drawback after SCI. Here, we investigated the muscle-specific natural recovery after cervical SCI in 748 patients from the European Multicenter Study about SCI (EMSCI), one of the largest datasets analysed to date. All participants were assessed within the first 4 weeks after SCI and re-assessed at 12, 24, and 48 weeks. Subsets of individuals underwent electrophysiological multimodal evaluations to discern CST and lower motor neuron (LMN) integrity [motor evoked potentials (MEP): N = 203; somatosensory evoked potentials (SSEP): N = 313; nerve conduction studies (NCS): N = 280]. We show the first evidence of the importance of CST sparing for proportional recovery in SCI, which is known in stroke survivors to represent the biological limits of structural and functional plasticity. In AIS D, baseline strength is a good predictor of segmental muscle strength recovery, while the proportionality in relation to baseline strength is lower for AIS B/C and breaks for AIS A. More severely impaired individuals showed non-linear and more variable recovery profiles, especially for hand muscles, while measures of CST sparing (by means of MEP) improved the prediction of hand muscle strength recovery. Therefore, assessment strategies for muscle-specific motor recovery in acute SCI improve by accounting for CST sparing and complement gross person-level predictions. The latter is of paramount importance for clinical trial outcomes and to target neurorehabilitation of upper limb function, where any single muscle function impacts the outcome of independence in cervical SCI.


2021 ◽  
Vol 11 (11) ◽  
pp. 1517
Author(s):  
Francesco Belotti ◽  
Mehmet Salih Tuncer ◽  
Tizian Rosenstock ◽  
Meltem Ivren ◽  
Peter Vajkoczy ◽  
...  

Background: Surgical planning with nTMS-based tractography is proven to increase safety during surgery. A preoperative risk stratification model has been published based on the M1 infiltration, RMT ratio, and tumor to corticospinal tract distance (TTD). The correlation of TTD with corticospinal tract to resection cavity distance (TRD) and outcome is needed to further evaluate the validity of the model. Aim of the study: To use the postop MRI-derived resection cavity to measure how closely the resection cavity approximated the preoperatively calculated corticospinal tract (CST) and how this correlates with the risk model and the outcome. Methods: We included 183 patients who underwent nTMS-based DTI and surgical resection for presumed motor-eloquent gliomas. TTD, TRD, and motor outcome were recorded and tested for correlations. The intraoperative monitoring documentation was available for a subgroup of 48 patients, whose responses were correlated to TTD and TRD. Results: As expected, TTD and TRD showed a good correlation (Spearman’s ρ = 0.67, p < 0.001). Both the TTD and the TRD correlated significantly with the motor outcome at three months (Kendall’s Tau-b 0.24 for TTD, 0.31 for TRD, p < 0.001). Interestingly, the TTD and TRD correlated only slightly with residual tumor volume, and only after correction for outliers related to termination of resection due to intraoperative monitoring events or the proximity of other eloquent structures (TTD ρ = 0.32, p < 0.001; TRD ρ = 0.19, p = 0.01). This reflects the fact that intraoperative monitoring (IOM) phenomena do not always correlate with preoperative structural analysis, and that additional factors influence the intraoperative decision to abort resection, such as the adjacency of other vulnerable structures. The TTD was also significantly correlated with variations in motor evoked potential (MEP) responses (no/reversible decrease vs. irreversible decrease; p = 0.03). Conclusions: The TTD approximates the TRD well, confirming the best predictive parameter and giving strength to the nTMS-based risk stratification model. Our analysis of TRD supports the use of the nTMS-based TTD measurement to estimate the resection preoperatively, also confirming the 8 mm cutoff. Nevertheless, the TRD proved to have a slightly stronger correlation with the outcome as the surgeon’s experience, anatomofunctional knowledge, and MEP observations influence the expected EOR.


Sign in / Sign up

Export Citation Format

Share Document