Theoretical considerations on a finite-element method for the computation of three-dimensional space-time elastodynamic wave fields

Wave Motion ◽  
1990 ◽  
Vol 12 (1) ◽  
pp. 67-80 ◽  
Author(s):  
Hendrik J. Stam ◽  
Adrianus T. De Hoop
2021 ◽  
Vol 21 (2) ◽  
pp. 203-214
Author(s):  
A.Y. Zolotukhin ◽  

The finite element method is usually used for two-dimensional space. The paper investigates the finite element method for solving the Signorini problem in three-dimensional space.


Author(s):  
Zhifeng Li ◽  
Hongchun Wu ◽  
Chenghui Wan ◽  
Tianliang Hu

In order to raise computation speed on the premise of enough numerical accuracy, the Predictor-Corrector Improved Quasi-Static (PC-IQS) method and Nodal Green’s Function Method (NGFM) were combined to solve the three-dimensional space-time neutron diffusion kinetics problems for Cartesian geometry. In addition, the improved quasi-static method and the Krylov algorithm were applied to solve the three-dimensional space-time neutron diffusion kinetics problems for cylindrical geometry. Based on the proposed model, the program of three-dimensional neutron space-time kinetic code has been tested by the two-dimensional and three-dimensional transient numerical benchmarks. The numerical results obtained by this work were in good agreement with the reference solutions.


Sign in / Sign up

Export Citation Format

Share Document