poincaré algebra
Recently Published Documents


TOTAL DOCUMENTS

163
(FIVE YEARS 22)

H-INDEX

25
(FIVE YEARS 2)

Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2099
Author(s):  
Angel Ballesteros ◽  
Giulia Gubitosi ◽  
Flavio Mercati

Recent work showed that κ-deformations can describe the quantum deformation of several relativistic models that have been proposed in the context of quantum gravity phenomenology. Starting from the Poincaré algebra of special-relativistic symmetries, one can toggle the curvature parameter Λ, the Planck scale quantum deformation parameter κ and the speed of light parameter c to move to the well-studied κ-Poincaré algebra, the (quantum) (A)dS algebra, the (quantum) Galilei and Carroll algebras and their curved versions. In this review, we survey the properties and relations of these algebras of relativistic symmetries and their associated noncommutative spacetimes, emphasizing the nontrivial effects of interplay between curvature, quantum deformation and speed of light parameters.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Joaquim Gomis ◽  
Euihun Joung ◽  
Axel Kleinschmidt ◽  
Karapet Mkrtchyan

Abstract We construct a generalisation of the three-dimensional Poincaré algebra that also includes a colour symmetry factor. This algebra can be used to define coloured Poincaré gravity in three space-time dimensions as well as to study generalisations of massive and massless free particle models. We present various such generalised particle models that differ in which orbits of the coloured Poincaré symmetry are described. Our approach can be seen as a stepping stone towards the description of particles interacting with a non-abelian background field or as a starting point for a worldline formulation of an associated quantum field theory.


2021 ◽  
Vol 81 (8) ◽  
Author(s):  
Ricardo Caroca ◽  
Patrick Concha ◽  
Diego Peñafiel ◽  
Evelyn Rodríguez

AbstractIn this work we present a gauge-invariant three-dimensional teleparallel supergravity theory using the Chern-Simons formalism. The present construction is based on a supersymmetric extension of a particular deformation of the Poincaré algebra. At the bosonic level the theory describes a non-Riemannian geometry with a non-vanishing torsion. In presence of supersymmetry, the teleparallel supergravity theory is characterized by a non-vanishing super-torsion in which the cosmological constant can be seen as a source for the torsion. We show that the teleparallel supergravity theory presented here reproduces the Poincaré supergravity in the vanishing cosmological limit. The extension of our results to $${\mathcal {N}}=p+q$$ N = p + q supersymmetries is also explored.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Sudarshan Ananth ◽  
Lars Brink ◽  
Sucheta Majumdar

Abstract We analyze possible local extensions of the Poincaré symmetry in light-cone gravity in four dimensions. We use a formalism where we represent the algebra on the two physical degrees of freedom, one with helicity 2 and the other with helicity −2. The representation is non-linearly realized and one of the light-cone momenta is the Hamiltonian, which is hence a non-linear generator of the algebra. We find that this can be locally realized and the Poincaré algebra extended to the BMS symmetry without any reference to asymptotic limits.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Dmitry Ponomarev

Abstract In the present paper we construct all short representation of so(3, 2) with the sl(2, ℂ) symmetry made manifest due to the use of sl(2, ℂ) spinors. This construction has a natural connection to the spinor-helicity formalism for massless fields in AdS4 suggested earlier. We then study unitarity of the resulting representations, identify them as the lowest-weight modules and as conformal fields in the three-dimensional Minkowski space. Finally, we compare these results with the existing literature and discuss the properties of these representations under contraction of so(3, 2) to the Poincare algebra.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 946
Author(s):  
Michele Arzano ◽  
Jerzy Kowalski-Glikman

In this review, we give a basic introduction to the κ-deformed relativistic phase space and free quantum fields. After a review of the κ-Poincaré algebra, we illustrate the construction of the κ-deformed phase space of a classical relativistic particle using the tools of Lie bi-algebras and Poisson–Lie groups. We then discuss how to construct a free scalar field theory on the non-commutative κ-Minkowski space associated to the κ-Poincaré and illustrate how the group valued nature of momenta affects the field propagation.


2021 ◽  
Vol 81 (3) ◽  
Author(s):  
Safia Yasmin

AbstractThe $$(1+1)$$ ( 1 + 1 ) dimensional generalized model where vector and axial vector interaction get mixed up with different strength is considered. Imposing a chiral constraint, the model can be expressed in terms of chiral boson. Then the theoretical spectra of this model has been determined in both the Lagrangian and Hamiltonian formalism. It is found that the massless degrees of freedom disappears from the spectra and the photon acquires mass as well. Imposition of chiral constraint brings a disaster so far as Lorentz invariance is concerned. An attempt has been made here to show the physical Lorentz invariance explicitly using Poincaré algebra.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Oscar Fuentealba ◽  
Marc Henneaux ◽  
Sucheta Majumdar ◽  
Javier Matulich ◽  
Turmoli Neogi

Abstract We investigate the asymptotic structure of the free Rarita-Schwinger theory in four spacetime dimensions at spatial infinity in the Hamiltonian formalism. We impose boundary conditions for the spin-3/2 field that are invariant under an infinite-dimensional (abelian) algebra of non-trivial asymptotic fermionic symmetries. The compatibility of this set of boundary conditions with the invariance of the theory under Lorentz boosts requires the introduction of boundary degrees of freedom in the Hamiltonian action, along the lines of electromagnetism. These boundary degrees of freedom modify the symplectic structure by a surface contribution appearing in addition to the standard bulk piece. The Poincaré transformations have then well-defined (integrable, finite) canonical generators. Moreover, improper fermionic gauge symmetries, which are also well-defined canonical transformations, are further enlarged and turn out to be parametrized by two independent angle-dependent spinor functions at infinity, which lead to an infinite-dimensional fermionic algebra endowed with a central charge. We extend next the analysis to the supersymmetric spin-(1, 3/2) and spin-(2, 3/2) multiplets. First, we present the canonical realization of the super-Poincaré algebra on the spin-(1, 3/2) multiplet, which is shown to be consistently enhanced by the infinite-dimensional abelian algebra of angle-dependent bosonic and fermionic improper gauge symmetries associated with the electromagnetic and the Rarita-Schwinger fields, respectively. A similar analysis of the spin-(2, 3/2) multiplet is then carried out to obtain the canonical realization of the super-Poincaré algebra, consistently enhanced by the abelian improper bosonic gauge transformations of the spin-2 field (BMS supertranslations) and the abelian improper fermionic gauge transformations of the spin-3/2 field.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Sruthi A. Narayanan

Abstract In an effort to further the study of amplitudes in the celestial CFT (CCFT), we construct conformal primary wavefunctions for massive fermions. Upon explicitly calculating the wavefunctions for Dirac fermions, we deduce the corresponding transformation of momentum space amplitudes to celestial amplitudes. The shadow wavefunctions are shown to have opposite spin and conformal dimension 2 − ∆. The Dirac conformal primary wave- functions are delta function normalizable with respect to the Dirac inner product provided they lie on the principal series with conformal dimension ∆ = 1 + iλ for λ ∈ ℝ. It is shown that there are two choices of a complete basis: single spin $$ J=\frac{1}{2} $$ J = 1 2 or $$ J=-\frac{1}{2} $$ J = − 1 2 and λ ∈ ℝ or multiple spin $$ J=\pm \frac{1}{2} $$ J = ± 1 2 and λ ∈ ℝ+∪0. The massless limit of the Dirac conformal primary wavefunctions is shown to agree with previous literature. The momentum generators on the celestial sphere are derived and, along with the Lorentz generators, form a representation of the Poincaré algebra. Finally, we show that the massive spin-1 conformal primary wavefunctions can be constructed from the Dirac conformal primary wavefunctions using the standard Clebsch-Gordan coefficients. We use this procedure to write the massive spin-$$ \frac{3}{2} $$ 3 2 , Rarita-Schwinger, conformal primary wavefunctions. This provides a prescription for constructing all massive fermionic and bosonic conformal primary wavefunctions starting from spin-$$ \frac{1}{2} $$ 1 2 .


Sign in / Sign up

Export Citation Format

Share Document