Proof of non-integrability for the Hénon-Heiles Hamiltonian near an exceptional integrable case

1982 ◽  
Vol 5 (2-3) ◽  
pp. 335-347 ◽  
Author(s):  
Philip Holmes
Keyword(s):  

We consider travelling periodic and quasi-periodic wave solutions of a set of coupled nonlinear Schrödinger equations. In fibre optics these equations can be used to model single mode fibres under the action of cross-phase modulation, with weak birefringence. The problem is reduced to the ‘1:2:1’ integrable case of the two-particle quartic potential. A general approach for finding elliptic solutions is given. New solutions which are associated with two-gap Treibich-Verdier potentials are found. General quasi-periodic solutions are given in terms of two dimensional theta functions with explicit expressions for frequencies in terms of theta constants. The reduction of quasi-periodic solutions to elliptic functions is discussed.


2011 ◽  
Vol 141 (5) ◽  
pp. 1083-1101 ◽  
Author(s):  
Masakazu Onitsuka ◽  
Jitsuro Sugie

The present paper deals with the following system:where p and p* are positive numbers satisfying 1/p + 1/p* = 1, and ϕq(z) = |z|q−2z for q = p or q = p*. This system is referred to as a half-linear system. We herein establish conditions on time-varying coefficients e(t), f(t), g(t) and h(t) for the zero solution to be uniformly globally asymptotically stable. If (e(t), f(t)) ≡ (h(t), g(t)), then the half-linear system is integrable. We consider two cases: the integrable case (e(t), f(t)) ≡ (h(t), g(t)) and the non-integrable case (e(t), f(t)) ≢ (h(t), g(t)). Finally, some simple examples are presented to illustrate our results.


Author(s):  
Ivan Polekhin

AbstractThe problem of motion of a rigid body with a fixed point is considered. We study qualitatively the solutions of the system after Routh reduction. For the Lagrange integrable case, we show that the trajectories of solutions starting at the boundary of a possible motion area can both cover and not cover the entire possible motion area. It distinguishes these systems from the systems without gyroscopic forces, where the trajectories always cover the possible motion area. We also present some numerical and analytical results on the same matter for the Kovalevskaya case.


Sign in / Sign up

Export Citation Format

Share Document