gyroscopic forces
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 13)

H-INDEX

10
(FIVE YEARS 1)

Author(s):  
Michel Géradin

AbstractA two-field formulation of the nonlinear dynamics of an elastic body is presented in which positions/orientations and the resulting velocity field are treated as independent. Combining a nonclassical description of elastic velocity that includes the convection velocity due to elastic deformation with floating reference axes minimizing the relative kinetic energy due to elastic deformation provides a fully uncoupled expression of kinetic energy. A transformation inspired by the classical Legendre transformation concept is introduced to develop the motion equations in canonical form. Finite element discretization is achieved using the same shape function sets for elastic displacements and velocities. Specific attention is brought to the discretization of the gyroscopic forces induced by elastic deformation. A model reduction strategy to construct superelement models suitable for flexible multibody dynamics applications is proposed, which fulfills the essential condition of orthogonality between a rigid body and elastic motions. The problem of expressing kinematic connections at superelement boundaries is briefly addressed. Two academic examples have been developed to illustrate some of the concepts presented.


Author(s):  
Alexander A. Kosov ◽  
Eduard I. Semenov

Abstract. A nonlinear system of differential equations describing the rotational motion of a rigid body under the action of torque of potential and circular-gyroscopic forces is considered. For this torque, the system of differential equations has three classical first integrals: the energy integral, the area integral, and the geometric integral. For the analogue of the Lagrange case, when two moments of inertia coincide and the potential depends on one angle, an additional first integral is found and integration in quadratures is performed. A number of examples is considered where parametric families of exact solutions are considered. In these examples, polynomial or analytical functions were used as a potential. In particular, we construct families of periodic and almost periodic motions, as well as families of asymptotically uniaxial rotations. We also identified movements that have limit values of opposite signs for unlimited increase and decrease of time.


2021 ◽  
Author(s):  
Kan-Chen Jane Wu

The objective of this study is to investigate the response of an Euler-Bernoulli beam under a force or mass traversing with constant velocity. Simply-supported and clamped-clamped boundary conditions are considered. The linear strain-displacement scenario is applied to both boundary conditions, while the von Kármán nonlinear scenario is applied only to the former boundary condition. The governing equation of motion is derived via the extended Hamilton's principle. Simulations are performed with the fourth-order Runge-Kutta method via Matlab software. The equation of motion is first validated and then used to investigate the effects of the beam second moment of area, the magnitude of the traversing velocity, and centrifugal and gyroscopic forces.


2021 ◽  
Author(s):  
Kan-Chen Jane Wu

The objective of this study is to investigate the response of an Euler-Bernoulli beam under a force or mass traversing with constant velocity. Simply-supported and clamped-clamped boundary conditions are considered. The linear strain-displacement scenario is applied to both boundary conditions, while the von Kármán nonlinear scenario is applied only to the former boundary condition. The governing equation of motion is derived via the extended Hamilton's principle. Simulations are performed with the fourth-order Runge-Kutta method via Matlab software. The equation of motion is first validated and then used to investigate the effects of the beam second moment of area, the magnitude of the traversing velocity, and centrifugal and gyroscopic forces.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
C. Mnasri ◽  
A. A. Elmandouh

In this work, we investigate the problem of constructing new integrable problems in the dynamics of the rigid body rotating about its fixed point as results of the effect of a combination of potential and gyroscopic forces possessing a common symmetry axis. We introduce two new integrable problems in a rigid body dynamics that generalize some integrable problems in this field, known by names of Chaplygin and Yehia–Elmandouh.


Author(s):  
Petro Lizunov ◽  
Valentyn Nedin

The results of numerical investigation of shafts transverse oscillations with account of gyroscopic inertia forces are presented. It is shown what the action and how the gyroscopic forces influence on the transverse oscillations of the shafts during rotation. The study has been done with computer program with a graphical interface that is developed by authors. The process of numerical solution of the differential equations of oscillations of rotating rods using the method of numerical differentiation of rod's bend forms by polynomial spline-functions and the Houbolt time integration method is described. A general block diagram of the algorithm is shown. This algorithm describes the process of repeated (cyclical) solving the system of differential equations of oscillations for every point of mechanical system in order to find the new coordinates of positions of these points in each next point of time t+Dt. The computer program in which the shown algorithm is realized allows to monitor for the behavior of moving computer model, which demonstrates the process of oscillatory motion in rotation. Moreover, the program draws the graphics of oscillations and changes of angular speeds and accelerations in different coordinate systems. Defines the dynamic stability fields and draw the diagrams of found fields. Using this program, the dynamics of a range of objects which are modeled by long elastic rods have been studied. For some objects is shown that on special rotational speeds of shafts with different lengths, in the rotating with shaft coordinate system, the trajectories of center of the section have an ordered character in the form of n-pointed star in time interval from excitation to the start of established circular oscillation with amplitude that harmoniously changes in time. It is noted that such trajectories are fact of the action of gyroscopic inertia forces that arise in rotation.


Author(s):  
Gleb L. Kotkin ◽  
Valeriy G. Serbo

This chapter addresses the free and forced oscillations of simple systems (with two or three degrees of freedom), the free oscillations of systems with the degenerate frequencies, and the eigen-oscillations of the electromechanical systems. This chapter also studies the oscillations of more complex systems using orthogonality of eigenoscillations and the symmetry properties of the system, the free oscillations of an anisotropic charged oscillator moving in a uniform constant magnetic field, and the perturbation theory adapted for the small oscillations. Finally, the chapter addresses oscillations of systems in which gyroscopic forces act and the eigen-oscillations of the simple molecules.


Author(s):  
Gleb L. Kotkin ◽  
Valeriy G. Serbo

This chapter addresses the free and forced oscillations of simple systems (with two or three degrees of freedom), the free oscillations of systems with the degenerate frequencies, and the eigen-oscillations of the electromechanical systems. This chapter also studies the oscillations of more complex systems using orthogonality of eigenoscillations and the symmetry properties of the system, the free oscillations of an anisotropic charged oscillator moving in a uniform constant magnetic field, and the perturbation theory adapted for the small oscillations. Finally, the chapter addresses oscillations of systems in which gyroscopic forces act and the eigen-oscillations of the simple molecules.


Sign in / Sign up

Export Citation Format

Share Document