fibre optics
Recently Published Documents


TOTAL DOCUMENTS

484
(FIVE YEARS 54)

H-INDEX

24
(FIVE YEARS 2)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 612
Author(s):  
Răzvan-George Bărtuşică ◽  
Mădălin Mihai ◽  
Simona Halunga ◽  
Octavian Fratu

This paper presents a technical solution that addresses mission-critical communications by extending the radio frequency coverage area using a flexible and scalable architecture. One of the main objectives is to improve both the reaction time and the coordination between mission-critical practitioners, also called public protection and disaster relief users, that operate in emergency scenarios. Mission-critical services such as voice and data should benefit from reliable communication systems that offer high availability, prioritization and flexible architecture. In this paper, we considered Terrestrial Trunked Radio (TETRA), the mobile radio standard used for mission-critical communications, as it has been designed in this respect and is widely used by first responder organizations. Even if RF coverage is designed before network deployment and continuously updated during the lifetime of the technology, some white areas may exist and should be covered by supplementary base stations or repeaters. The model presented in this paper is an optical repeater for TETRA standard that can offer up to 52.6 dB downlink, 65.6 dB uplink gain and up to 3.71 km coverage distance in a radiating cable installation scenario. The design in not limited, as it can be extended to several different mobile radio standards using the same principle. Flexibility and scalability attributes are taken into consideration, as they can build a cost-effective deployment considering both capital and operational expenditures.


2022 ◽  
Vol 137 (1) ◽  
Author(s):  
Diego Quintero Balbas ◽  
Giancarlo Lanterna ◽  
Claudia Cirrincione ◽  
Raffaella Fontana ◽  
Jana Striova

AbstractThe identification of textile fibres from cultural property provides information about the object's technology. Today, microscopic examination remains the preferred method, and molecular spectroscopies (e.g. Fourier transform infrared (FTIR) and Raman spectroscopies) can complement it but may present some limitations. To avoid sampling, non-invasive fibre optics reflectance spectroscopy (FORS) in the near-infrared (NIR) range showed promising results for identifying textile fibres; but examining and interpreting numerous spectra with features that are not well defined is highly time-consuming. Multivariate classification techniques may overcome this problem and have already shown promising results for classifying textile fibres for the textile industry but have been seldom used in the heritage science field. In this work, we compare the performance of two classification techniques, principal component analysis–linear discrimination analysis (PCA-LDA) and soft independent modelling of class analogy (SIMCA), to identify cotton, wool, and silk fibres, and their mixtures in historical textiles using FORS in the NIR range (1000–1700 nm). We built our models analysing reference samples of single fibres and their mixtures, and after the model calculation and evaluation, we studied four historical textiles: three Persian carpets from the nineteenth and twentieth centuries and an Italian seventeenth-century tapestry. We cross-checked the results with Raman spectroscopy. The results highlight the advantages and disadvantages of both techniques for the non-invasive identification of the three fibre types in historical textiles and the influence their vicinity can have in the classification.


Author(s):  
Rashmi Rekha Mishra ◽  
◽  
Karmila Soren ◽  

Fibre optics deals with study of propagation of light through transparent dielectric waveguides. The fibre optics is used for transmission of data from point to point location. Fibre optic systems currently used are most extensively as the transmission line between terrestrial hardwired systems. The carrier frequencies used in conventional systems had the limitations in handling the volume and rate of the data transmission. Greater the carrier frequency larger is the available bandwidth and information carrying capacity. This paper explains about Optical BPSK, where input data is converted to BPSK data which is optically modulated by optical modulator and transmitted through an optical fibre cable. The transmitted data and received data are compared in the end.


2021 ◽  
Author(s):  
Jack Bramham ◽  
Alexander Golovanov

Abstract In situ illumination of liquid-state nuclear magnetic resonance (NMR) samples makes it possible for a wide range of light-dependent chemical and biological phenomena to be studied by the powerful analytical technique. However, the position of an NMR sample deep within the bore of the spectrometer magnet renders such illumination challenging. Here, we demonstrate a photo-NMR insert device (NMRtorch) where a lighthead containing an LED array is attached directly to the top of an NMRtorch tube. The wall of the tube itself acts as a light guide, illuminating the sample from the outside. We explore how this new setup performs in a number of photo-NMR applications, including photoisomerisation and photo-chemically induced dynamic nuclear polarisation (photo-CIDNP), and demonstrate the potential for ultraviolet (UV) degradation studies with continuous online NMR assessment. This setup enables users of any typical liquid-state spectrometer to easily perform in situ photo-NMR experiments, using a wide range of wavelengths.


2021 ◽  
Vol 54 (6) ◽  
Author(s):  
Aurélien Thureau ◽  
Pierre Roblin ◽  
Javier Pérez

Small-angle X-ray scattering (SAXS) of proteins in solution has become a key tool for biochemists and structural biologists, thanks especially to the availability of beamlines with high-throughput capabilities at synchrotron sources. Despite the large spectrum of scientific disciplines tackled on the SWING beamline since its opening in 2008, there has always been a strong commitment to offering state-of-the-art biological SAXS (BioSAXS) instrumentation and data reduction methods to the scientific community. The extremely reliable in-vacuum EigerX-4M detector allows collection of an unlimited number of frames without noise. A small beamstop including a diamond diode-based monitor enables measurements of the transmitted intensity with 0.1% precision as well as a q max/q min ratio as large as 140 at a single distance. The parasitic scattering has been strongly reduced by the installation of new hybrid blades. A new thermally controlled in-vacuum capillary holder including fibre-optics-based spectroscopic functionalities allows the simultaneous use of three spectroscopic techniques in addition to SAXS measurements. The addition of a second high-performance liquid chromatography (HPLC) circuit has virtually eliminated the waiting time associated with column equilibration. The easy in-line connection of a multi-angle light scattering spectrometer and a refractometer allows for an independent determination of the molecular mass and of the concentration of low-UV-absorption samples such as detergents and sugars, respectively. These instrumental improvements are combined with important software developments. The HPLC injection Agilent software is controlled by the SAXS beamline acquisition software, allowing a virtually unlimited series of automated SAXS measurements to be synchronized with the sample injections. All data-containing files and reports are automatically stored in the same folders, with names related to both the user and sample. In addition, all raw SAXS images are processed automatically on the fly, and the analysed data are stored in the ISPyB database and made accessible via a web page.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Peng Mao ◽  
Changxu Liu ◽  
Xiyan Li ◽  
Mengxia Liu ◽  
Qiang Chen ◽  
...  

AbstractWhile total internal reflection (TIR) lays the foundation for many important applications, foremost fibre optics that revolutionised information technologies, it is undesirable in some other applications such as light-emitting diodes (LEDs), which are a backbone for energy-efficient light sources. In the case of LEDs, TIR prevents photons from escaping the constituent high-index materials. Advances in material science have led to good efficiencies in generating photons from electron–hole pairs, making light extraction the bottleneck of the overall efficiency of LEDs. In recent years, the extraction efficiency has been improved, using nanostructures at the semiconductor/air interface that outcouple trapped photons to the outside continuum. However, the design of geometrical features for light extraction with sizes comparable to or smaller than the optical wavelength always requires sophisticated and time-consuming fabrication, which causes a gap between lab demonstration and industrial-level applications. Inspired by lightning bugs, we propose and realise a disordered metasurface for light extraction throughout the visible spectrum, achieved with single-step fabrication. By applying such a cost-effective light extraction layer, we improve the external quantum efficiency by a factor of 1.65 for commercialised GaN LEDs, demonstrating a substantial potential for global energy-saving and sustainability.


2021 ◽  
Author(s):  
Irene Lenzi ◽  
Micaela Borsa ◽  
Christina Czekus ◽  
Thomas Rusterholz ◽  
Claudio L. Bassetti ◽  
...  

Modelling stroke in animals remains a challenge for translational research, especially for the infraction of small subcortical arteries. Using combined fibre optics and photothrombosis technologies, we developed a novel model of optically-induced infarcts (Opto-STROKE). Combining our model with electrophysiological recordings in freely-behaving mice, we studied early and late consequent patho-physiological changes in the dynamics of sleep-wake circuits and cognitive performance. Here, focusing on inducing Opto-STROKE lesions in the intralaminar thalamus (IL), which in humans cause severe impairments of arousal, cognition, and affective symptoms, our model recapitulated important deficits on sleep disorders presented in humans including arousal instability, concurrent to an augmented slow-wave activity and a reduction gamma power bands during wakefulness. Moreover, during NREM sleep, spindle density was decreased and topographically shifted to frontal cortices when compared to control animals. Remarkably, gamma power and spindle density were correlated with decreased pain threshold and impaired prefrontal cortex- dependent working memory in Opto-STROKE mice relative to controls. Collectively, our combined method influences both anatomical and functional outcomes of the classical stroke procedures and offers new insights on the fundamental role of the media thalamus as a hub for the regulation of both sleep-wake architecture and cognition.


Author(s):  
Vadym Sliusar

This report is considered different aspects of the concept of the networked distributed engine control system (DECS) of future air vehicles. These aspects include the following: the structure of multiple networks similar to NATO Generic Vehicle Architecture (NGVA), the role of Artificial Intelligence (AI) in DECS, and the use Augmented Reality (AR) as Human-Machine Interface between AI and pilots. Deployment of AI solutions for monitoring equipment in on-board infrastructure can be provided on physical or virtual servers and in the clouds. In this case, it is possible to use various methods of alerting the pilot and ground personnel on the basis of AR. The use of AI allows covering an unlimited set of scenarios, to provide an assessment of the likelihood of equipment failure, classification alarm is normal, and recognition of the development of defects. To collect Big Data from sensors and the pre-processing of this data before a machine learning (ML) procedure it is proposed to form data sets with the help of the face-splitting matrix product. To decrease the time of reaction of Neural Networks it has been suggested the implementation of advanced tensor-matrix theory on the basis of penetrating face product of matrices. Other important results of the report are a possible version of the AR data format for DECS and a proposal about the use of non-orthogonal frequency discrete multiplexing (N-OFDM) signals to data transfer via fibre optics.


Sign in / Sign up

Export Citation Format

Share Document