Global stability of a class of dincontinuous area-preserving maps

1985 ◽  
Vol 14 (2) ◽  
pp. 285
1985 ◽  
Vol 97 (2) ◽  
pp. 261-278 ◽  
Author(s):  
P. J. McCarthy ◽  
M. Crampin ◽  
W. Stephenson

AbstractThe requirement that the graph of a function be invariant under a linear map is equivalent to a functional equation of f. For area preserving maps M(det (M) = 1), the functional equation is equivalent to an (easily solved) linear one, or to a quadratic one of the formfor all Here 2C = Trace (M). It is shown that (Q) admits continuous solutions ⇔ M has real eigenvalues ⇔ (Q) has linear solutions f(x) = λx ⇔ |C| ≥ 1. For |c| = 1 or C < – 1, (Q) only admits a few simple solutions. For C > 1, (Q) admits a rich supply of continuous solutions. These are parametrised by an arbitrary function, and described in the sense that a construction is given for the graphs of the functions which solve (Q).


2016 ◽  
Vol 38 (4) ◽  
pp. 1479-1498
Author(s):  
JUNGSOO KANG

In reversible dynamical systems, it is of great importance to understand symmetric features. The aim of this paper is to explore symmetric periodic points of reversible maps on planar domains invariant under a reflection. We extend Franks’ theorem on a dichotomy of the number of periodic points of area-preserving maps on the annulus to symmetric periodic points of area-preserving reversible maps. Interestingly, even a non-symmetric periodic point guarantees infinitely many symmetric periodic points. We prove an analogous statement for symmetric odd-periodic points of area-preserving reversible maps isotopic to the identity, which can be applied to dynamical systems with double symmetries. Our approach is simple, elementary, and far from Franks’ proof. We also show that a reversible map has a symmetric fixed point if and only if it is a twist map which generalizes a boundary twist condition on the closed annulus in the sense of Poincaré–Birkhoff. Applications to symmetric periodic orbits in reversible dynamical systems with two degrees of freedom are briefly discussed.


1994 ◽  
Vol 26 (4) ◽  
pp. 382-394
Author(s):  
Robert S. Mackay ◽  
Tony Shardlow

Sign in / Sign up

Export Citation Format

Share Document