arbitrary function
Recently Published Documents


TOTAL DOCUMENTS

205
(FIVE YEARS 35)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Vol 13 (4) ◽  
pp. 1-40
Author(s):  
Spoorthy Gunda ◽  
Pallavi Jain ◽  
Daniel Lokshtanov ◽  
Saket Saurabh ◽  
Prafullkumar Tale

A graph operation that contracts edges is one of the fundamental operations in the theory of graph minors. Parameterized Complexity of editing to a family of graphs by contracting k edges has recently gained substantial scientific attention, and several new results have been obtained. Some important families of graphs, namely, the subfamilies of chordal graphs, in the context of edge contractions, have proven to be significantly difficult than one might expect. In this article, we study the F -Contraction problem, where F is a subfamily of chordal graphs, in the realm of parameterized approximation. Formally, given a graph G and an integer k , F -Contraction asks whether there exists X ⊆ E(G) such that G/X ∈ F and | X | ≤ k . Here, G/X is the graph obtained from G by contracting edges in X . We obtain the following results for the F - Contraction problem: • Clique Contraction is known to be FPT . However, unless NP⊆ coNP/ poly , it does not admit a polynomial kernel. We show that it admits a polynomial-size approximate kernelization scheme ( PSAKS ). That is, it admits a (1 + ε)-approximate kernel with O ( k f(ε)) vertices for every ε > 0. • Split Contraction is known to be W[1]-Hard . We deconstruct this intractability result in two ways. First, we give a (2+ε)-approximate polynomial kernel for Split Contraction (which also implies a factor (2+ε)- FPT -approximation algorithm for Split Contraction ). Furthermore, we show that, assuming Gap-ETH , there is no (5/4-δ)- FPT -approximation algorithm for Split Contraction . Here, ε, δ > 0 are fixed constants. • Chordal Contraction is known to be W[2]-Hard . We complement this result by observing that the existing W[2]-hardness reduction can be adapted to show that, assuming FPT ≠ W[1] , there is no F(k) - FPT -approximation algorithm for Chordal Contraction . Here, F(k) is an arbitrary function depending on k alone. We say that an algorithm is an h(k) - FPT -approximation algorithm for the F -Contraction problem, if it runs in FPT time, and on any input (G, k) such that there exists X ⊆ E(G) satisfying G/X ∈ F and | X | ≤ k , it outputs an edge set Y of size at most h(k) ċ k for which G/Y is in F .


Author(s):  
Run-Fa Zhang ◽  
Ming-Chu Li ◽  
Tao Fang ◽  
Fu-Chang Zheng ◽  
Sudao Bilige

In this paper, new trial functions are constructed via extended “3-3-2-3-1” and “3-3-2-3-2-1” network models based on the bilinear neural networks method. The new lump-type solution, interaction solution, plentiful arbitrary function solutions and periodic lump solutions of the dimensionally reduced [Formula: see text]-generalized Burgers–Kadomtsev–Petviashvili equation are solved. To analyze the dynamic properties of the solutions, appropriate parameters and different activated functions are defined in arbitrary function solutions. Through the three-dimensional and density plots, the dynamical characteristics of the solutions are shown well.


2021 ◽  
Author(s):  
Loc Nguyen

Lagrange interpolation is the effective method to approximate an arbitrary function by a polynomial. But there is a need to estimate derivative and integral given a set of points. Although it is possible to make Lagrange interpolation first, which produces Lagrange polynomial; after that we take derivative or integral on such polynomial. However this approach does not result out the best estimation of derivative and integral. This research proposes a different approach that makes approximation of derivative and integral based on point data first, which in turn applies Lagrange interpolation into the approximation. Moreover, the research also proposes an extension of Lagrange interpolation to bivariate function, in which interpolation polynomial is converted as two-variable polynomial.


2021 ◽  
Vol 5 (11) ◽  
pp. 119401
Author(s):  
Martin Charron ◽  
Ayrton Zadra

Abstract An extension is proposed to the internal symmetry transformations associated with mass, entropy and other Clebsch-related conservation in geophysical fluid dynamics. Those symmetry transformations were previously parameterized with an arbitrary function  of materially conserved Clebsch potentials. The extension consists in adding potential vorticity q to the list of fields on which a new arbitrary function  depends. If  = q  ( s ) , where  ( s ) is an arbitrary function of specific entropy s, then the symmetry is trivial and gives rise to a trivial conservation law. Otherwise, the symmetry is non-trivial and an associated non-trivial conservation law exists. Moreover, the notions of trivial and non-trivial Casimir invariants are defined. All non-trivial symmetries that become hidden following a reduction of phase space are associated with non-trivial Casimir invariants of a non-canonical Hamiltonian formulation for fluids, while all trivial conservation laws are associated with trivial Casimir invariants.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012055
Author(s):  
JC Ndogmo

Abstract A method for the group classification of differential equations we recently proposed is applied to the classification of a family of generalized Klein-Gordon equations. Our results are compared with other classification results of this family of equations labelled by an arbitrary function. Some conclusions are drawn with regards to the effectiveness of the proposed method.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1875
Author(s):  
Jiangming Ma ◽  
Muhammad Aslam Noor ◽  
Khalida Inayat Noor

Equilibrium problems and variational inequalities are connected to the symmetry concepts, which play important roles in many fields of sciences. Some new preinvex functions, which are called generalized preinvex functions, with the bifunction ζ(.,.) and an arbitrary function k, are introduced and studied. Under the normed spaces, new parallelograms laws are taken as an application of the generalized preinvex functions. The equilibrium-like problems are represented as the minimum values of generalized preinvex functions under the kζ-invex sets. Some new inertial methods are proposed and researched to solve the higher order directional equilibrium-like problem, Convergence criteria of the our methods is discussed, along with some unresolved issues.


2021 ◽  
Vol 72 ◽  
Author(s):  
Tobias Harks ◽  
Max Klimm ◽  
Jannik Matuschke

This paper studies the existence of pure Nash equilibria in resource graph games, a general class of strategic games succinctly representing the players’ private costs. These games are defined relative to a finite set of resources and the strategy set of each player corresponds to a set of subsets of resources. The cost of a resource is an arbitrary function of the load vector of a certain subset of resources. As our main result, we give complete characterizations of the cost functions guaranteeing the existence of pure Nash equilibria for weighted and unweighted players, respectively. For unweighted players, pure Nash equilibria are guaranteed to exist for any choice of the players’ strategy space if and only if the cost of each resource is an arbitrary function of the load of the resource itself and linear in the load of all other resources where the linear coefficients of mutual influence of different resources are symmetric. This implies in particular that for any other cost structure there is a resource graph game that does not have a pure Nash equilibrium. For weighted games where players have intrinsic weights and the cost of each resource depends on the aggregated weight of its users, pure Nash equilibria are guaranteed to exist if and only if the cost of a resource is linear in all resource loads, and the linear factors of mutual influence are symmetric, or there is no interaction among resources and the cost is an exponential function of the local resource load. We further discuss the computational complexity of pure Nash equilibria in resource graph games showing that for unweighted games where pure Nash equilibria are guaranteed to exist, it is coNP-complete to decide for a given strategy profile whether it is a pure Nash equilibrium. For general resource graph games, we prove that the decision whether a pure Nash equilibrium exists is Σ p 2 -complete.


2021 ◽  
Vol 81 (9) ◽  
Author(s):  
M. O. Katanaev

AbstractA general analytic spherically symmetric solution of the Bogomol’nyi equations is found. It depends on two constants and one arbitrary function on radius and contains the Bogomol’nyi–Prasad–Sommerfield and Singleton solutions as particular cases. Thus all spherically symmetric ’t Hooft–Polyakov monopoles with massless scalar field and minimal energy are derived.


2021 ◽  
Vol 81 (8) ◽  
Author(s):  
Manuel Gonzalez-Espinoza ◽  
Ramón Herrera ◽  
Giovanni Otalora ◽  
Joel Saavedra

AbstractIt is investigated the reconstruction during the slow-roll inflation in the most general class of scalar-torsion theories whose Lagrangian density is an arbitrary function $$f(T,\phi )$$ f ( T , ϕ ) of the torsion scalar T of teleparallel gravity and the inflaton $$\phi $$ ϕ . For the class of theories with Lagrangian density $$f(T,\phi )=-M_{pl}^{2} T/2 - G(T) F(\phi ) - V(\phi )$$ f ( T , ϕ ) = - M pl 2 T / 2 - G ( T ) F ( ϕ ) - V ( ϕ ) , with $$G(T)\sim T^{s+1}$$ G ( T ) ∼ T s + 1 and the power s as constant, we consider a reconstruction scheme for determining both the non-minimal coupling function $$F(\phi )$$ F ( ϕ ) and the scalar potential $$V(\phi )$$ V ( ϕ ) through the parametrization (or attractor) of the scalar spectral index $$n_{s}(N)$$ n s ( N ) and the tensor-to-scalar ratio r(N) as functions of the number of $$e-$$ e - folds N. As specific examples, we analyze the attractors $$n_{s}-1 \propto 1/N$$ n s - 1 ∝ 1 / N and $$r\propto 1/N$$ r ∝ 1 / N , as well as the case $$r\propto 1/N (N+\gamma )$$ r ∝ 1 / N ( N + γ ) with $$\gamma $$ γ a dimensionless constant. In this sense and depending on the attractors considered, we obtain different expressions for the function $$F(\phi )$$ F ( ϕ ) and the potential $$V(\phi )$$ V ( ϕ ) , as also the constraints on the parameters present in our model and its reconstruction.


2021 ◽  
Vol 81 (4) ◽  
Author(s):  
Qin Tan ◽  
Wen-Di Guo ◽  
Yu-Peng Zhang ◽  
Yu-Xiao Liu

AbstractIn this work, we investigate the gravitational resonances in various f(T)-brane models with the warp factor $$\text {e}^{A(y)}=\tanh \big (k(y+b)\big )-\tanh \big (k(y-b)\big )$$ e A ( y ) = tanh ( k ( y + b ) ) - tanh ( k ( y - b ) ) , where f(T) is an arbitrary function of the torsion scalar T. For three kinds of f(T), we give the solutions to the system. Besides, we consider the tensor perturbation of the vielbein and obtain the effective potentials by the Kaluza–Klein (KK) decomposition. Then we analyze what kind of effective potential can produce the gravitational resonances. The effects of different parameters on the gravitational resonances are analyzed. The lifetimes of the resonances could be long enough as regards the age of our universe in some ranges of the parameters. This indicates that the gravitational resonances might be considered as one of the candidates for dark matter. Combining the current experimental observations, we constrain the parameters for these brane models.


Sign in / Sign up

Export Citation Format

Share Document