Rapid identification of Saccharomonospora strains by multiplex PCR using species-specific primers within the 16S rRNA gene

1996 ◽  
Vol 27 (1) ◽  
pp. 89-95 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Sung Taik Lee ◽  
Yong Kook Shin ◽  
Sam-Bong Kim ◽  
Hong-Joong Kim ◽  
...  
2005 ◽  
Vol 51 (11) ◽  
pp. 957-966 ◽  
Author(s):  
Keya Sen

Existing biochemical methods cannot distinguish among some species of Aeromonads, while genetic methods are labor intensive. In this study, primers were developed to three genes of Aeromonas: lipase, elastase, and DNA gyraseB. In addition, six previously described primer sets, five corresponding to species-specific signature regions of the 16S rRNA gene from A. veronii, A. popoffii, A. caviae, A. jandaei, and A. schubertii, respectively, and one corresponding to A. hydrophila specific lipase (hydrolipase), were chosen. The primer sets were combined in a series of multiplex-PCR (mPCR) assays against 38 previously characterized strains. Following PCR, each species was distinguished by the production of a unique combination of amplicons. When the assays were tested using 63 drinking water isolates, there was complete agreement in the species identification (ID) for 59 isolates, with ID established by biochemical assays. Sequencing the gyrB and the 16S rRNA gene from the remaining four strains established that the ID obtained by mPCR was correct for three strains. For only one strain, no consensus ID could be obtained. A rapid and reliable method for identification of different Aeromonas species is proposed that does not require restriction enzyme digestions, thus simplifying and speeding up the process.Key words: Aeromonas, multiplex-PCR, identification.


2004 ◽  
Vol 70 (5) ◽  
pp. 3171-3175 ◽  
Author(s):  
X. Bonjoch ◽  
E. Ballesté ◽  
A. R. Blanch

ABSTRACT Bifidobacteria are one of the most common bacterial types found in the intestines of humans and other animals and may be used as indicators of human fecal pollution. The presence of nine human-related Bifidobacterium species was analyzed in human and animal wastewater samples of different origins by using species-specific primers based on 16S rRNA sequences. Only B. adolescentis and B. dentium were found exclusively in human sewage. A multiplex PCR approach with strain-specific primers was developed. The method showed a sensitivity threshold of 10 cells/ml. This new molecular method could provide useful information for the characterization of fecal pollution sources.


2006 ◽  
Vol 55 (1) ◽  
pp. 109-113 ◽  
Author(s):  
Ali Al-Ahmad ◽  
Thorsten Mathias Auschill ◽  
Gabriele Braun ◽  
Elmar Hellwig ◽  
Nicole Birgit Arweiler

This study was carried out in order to compare two PCR-based methods in the detection of Streptococcus mutans. The first PCR method was based on primers for the 16S rRNA gene and the second method was based on specific primers that targeted the glucosyltransferase gene (gtfB). Each PCR was performed with eight different streptococci from the viridans group, five other streptococci and 17 different non-streptococcal bacterial strains. Direct use of the S. mutans 16S rRNA gene-specific primers revealed that Streptococcus gordonii and Streptococcus infantis were also detected. After amplifying the 16S rRNA gene with universal primers and subsequently performing nested PCR, the S. mutans-specific nested primers based on the 16S rRNA gene detected all tested streptococci. There was no cross-reaction of the gtfB primers after direct PCR. Our results indicate that direct PCR and nested PCR based on 16S rRNA genes can reveal false-positive results for oral streptococci and lead to an overestimation of the prevalence of S. mutans with regards to its role as the most prevalent causative agent of dental caries.


2006 ◽  
Vol 66 (1) ◽  
pp. 156-164 ◽  
Author(s):  
Inge Vliegen ◽  
Jan A. Jacobs ◽  
Erik Beuken ◽  
Cathrien A. Bruggeman ◽  
Cornelis Vink

1999 ◽  
Vol 65 (10) ◽  
pp. 4506-4512 ◽  
Author(s):  
Takahiro Matsuki ◽  
Koichi Watanabe ◽  
Ryuichiro Tanaka ◽  
Masafumi Fukuda ◽  
Hiroshi Oyaizu

ABSTRACT In order to clarify the distribution of bifidobacterial species in the human intestinal tract, a 16S rRNA-gene-targeted species-specific PCR technique was developed and used with DNAs extracted from fecal samples obtained from 48 healthy adults and 27 breast-fed infants. To cover all of the bifidobacterial species that have been isolated from and identified in the human intestinal tract, species-specific primers for Bifidobacterium longum, B. infantis,B. dentium, and B. gallicum were developed and used with primers for B. adolescentis, B. angulatum, B. bifidum, B. breve, and the B. catenulatum group (B. catenulatum andB. pseudocatenulatum) that were developed in a previous study (T. Matsuki, K. Watanabe, R. Tanaka, and H. Oyaizu, FEMS Microbiol. Lett. 167:113–121, 1998). The specificity of the nine primers was confirmed by PCR, and the species-specific PCR method was found to be a useful means for identifying Bifidobacteriumstrains isolated from human feces. The results of an examination of bifidobacterial species distribution showed that the B. catenulatum group was the most commonly found taxon (detected in 44 of 48 samples [92%]), followed by B. longum andB. adolescentis, in the adult intestinal bifidobacterial flora and that B. breve, B. infantis, andB. longum were frequently found in the intestinal tracts of infants. The present study demonstrated that qualitative detection of the bifidobacterial species present in human feces can be accomplished rapidly and accurately.


Sign in / Sign up

Export Citation Format

Share Document