bifidobacterium longum
Recently Published Documents


TOTAL DOCUMENTS

1125
(FIVE YEARS 381)

H-INDEX

72
(FIVE YEARS 10)

2022 ◽  
Author(s):  
Leena Sapra ◽  
Niti Shokeen ◽  
Konica Gupta ◽  
Chaman Saini ◽  
Asha Bhardwaj ◽  
...  

Discoveries in the last few years have emphasized the existence of an enormous breadth of communication between osteo-immune system. These discoveries fuel novel approaches for the treatment of several bone-pathologies including osteoporosis, an inflammatory bone anomaly affecting more than 500 million people globally. Bifidobacterium longum (BL) is preferred probiotic of choice due to its varied immunomodulatory potential in alleviating various inflammatory diseases. Here, we evaluate the effect of BL in ovariectomy (ovx)-induced post-menopausal osteoporotic mice model. Our in vitro findings reveal that BL suppresses the differentiation and functional activity of RANKL-induced osteoclastogenesis in both mouse bone marrow cells and human PBMCs. Our in vivo data clearly establish that BL exhibits osteoprotective potential via modulating the immunoporotic Breg-Treg-Th17 cell-axis. Furthermore, micro-CT and bone mechanical strength data support that BL supplementation significantly enhanced bone mass and strength, and improved microarchitecture in ovx mice. Remarkably, alteration in frequencies of CD19+CD1dhiCD5+ Bregs, CD4+Foxp3+IL-10+ Tregs, and CD4+Rorgt+IL-17+ Th17 immune cells in distinct lymphoid organs along with serum-cytokine data (enhanced anti-osteoclastogenic cytokines IFN-g; and IL-10 and reduced osteoclastogenic-cytokines IL-6, IL-17, and TNF-a) strongly support the immunomodulatory potential of BL. Altogether our findings establish a novel osteo-protective and immunoporotic potential of BL in augmenting bone health under osteoporotic conditions.


2022 ◽  
Vol 12 ◽  
Author(s):  
Erola Astó ◽  
Pol Huedo ◽  
Tatiana Altadill ◽  
Meritxell Aguiló García ◽  
Maura Sticco ◽  
...  

Functional gastrointestinal disorders (FGIDs) are a common concern during the first year of life. Recognized as gut-brain axis disorders by Rome IV criteria, FGIDs etiology is linked to altered gut-brain interaction, intestinal physiology, and microbiota. In this regard, probiotics have emerged as a promising therapy for infant FGIDs. In this study, we have investigated the probiotic potential of the strains Bifidobacterium longum KABP042 and Pediococcus pentosaceus KABP041—isolated from healthy children’s feces—in the treatment of FGIDs. To this scope, genome sequences of both strains were obtained and subjected to in silico analyses. No virulence factors were detected for any strain and only the non-transferable erm(49) gene, which confers resistance to erythromycin and clindamycin, was identified in the genome of B. longum KABP042. Safety of both strains was confirmed by acute oral toxicity in rats. In vitro characterization revealed that the strains tolerate gastric and bile challenges and display a great adhesion capacity to human intestinal cells. The two strains mediate adhesion by different mechanisms and, when combined, synergically induce the expression of Caco-2 tight junction proteins. Moreover, growth inhibition experiments demonstrated the ability of the two strains alone and in combination to antagonize diverse Gram-negative and Gram-positive bacterial pathogens during sessile and planktonic growth. Pathogens’ inhibition was mostly mediated by the production of organic acids, but neutralization experiments strongly suggested the presence of additional antimicrobial compounds in probiotic culture supernatants such as the bacteriocin Lantibiotic B, whose gene was detected in the genome of B. longum KABP042. Finally, an exploratory, observational, pilot study involving 36 infants diagnosed with at least one FGID (infant colic and/or functional constipation) showed the probiotic formula was well tolerated and FGID severity was significantly reduced after 14 days of treatment with the 2 strains. Overall, this work provides evidence of the probiotic and synergic properties of strains B. longum KABP042 and P. pentosaceus KABP041, and of their potential to treat pediatric FGIDs.Clinical Trial Registration: [www.ClinicalTrials.gov], [identifier NCT04944628].


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262317
Author(s):  
Giovana S. Slanzon ◽  
Benjamin J. Ridenhour ◽  
Dale A. Moore ◽  
William M. Sischo ◽  
Lindsay M. Parrish ◽  
...  

Gastrointestinal disease (GI) is the most common illness in pre-weaned dairy calves. Studies have associated the fecal microbiome composition with health status, but it remains unclear how the microbiome changes across different levels of GI disease and breeds. Our objective was to associate the clinical symptoms of GI disease with the fecal microbiome. Fecal samples were collected from calves (n = 167) of different breeds (Holstein, Jersey, Jersey-cross and beef-cross) from 4–21 d of age. Daily clinical evaluations assessed health status. Calves with loose or watery feces were diagnosed with diarrhea and classified as bright-sick (BS) or depressed-sick (DS) according to behavior. Calves with normal or semiformed feces and no clinical illness were classified as healthy (H). One hundred and three fecal samples were obtained from consistently healthy calves and 64 samples were from calves with diarrhea (n = 39 BS; n = 25 DS). The V3-V4 region of 16S rRNA gene was sequenced and analyzed. Differences were identified by a linear-mixed effects model with a negative binomial error. DS and Jersey calves had a higher relative abundance of Streptococcus gallolyticus relative to H Holstein calves. In addition, DS calves had a lower relative abundance of Bifidobacterium longum and an enrichment of Escherichia coli. Species of the genus Lactobacillus, such as an unclassified Lactobacillus, Lactobacillus reuteri, and Lactobacillus salivarius were enriched in calves with GI disease. Moreover, we created a model to predict GI disease based on the fecal microbiome composition. The presence of Eggerthella lenta, Bifidobacterium longum, and Collinsella aerofaciens were associated with a healthy clinical outcome. Although lactobacilli are often associated with beneficial probiotic properties, the presence of E. coli and Lactobacillus species had the highest coefficients positively associated with GI disease prediction. Our results indicate that there are differences in the fecal microbiome of calves associated with GI disease severity and breed specificities.


2021 ◽  
Vol 27 (6) ◽  
pp. 1343-1350
Author(s):  
Kyung-Min Kim ◽  
Ha-Yeon Kim ◽  
So-Yoon Cha ◽  
Ye-Hyang Kim ◽  
Ji-Won Song ◽  
...  

Several previous studies have investigated the skin aging prevention effects of ceramide, hyaluronic acid, and natural or fermented plant materials. Recently, oral administration and dermal application of probiotics or probiotic lysates have shown antiaging effects. The purpose of this study is to optimize the preparation of probiotic lysates with a high concentration of nucleotides and to confirm the effects of probiotic lysates on the skin. Probiotic lysates were prepared by heating at 121°C for various periods with adding of sodium hyaluronic acid. Probiotic lysates of Bifidobacterium longum HDB7072, Lactobacillus paracasei HDB1196, and Lactobacillus acidophilus HDB1014 were applied to normal human epidermal keratinocytes (NHEKs), fibroblast cells, and B16F1 cells, respectively. Cell viability, antioxidant effects, and mRNA expression were evaluated by using MTT assays, DPPH assays, and qRT-PCR. Probiotic lysates prepared by heating the culture medium at 121°C for 2 h with 0.5% sodium hyaluronic acid showed the highest nucleotide concentration. In the three tested skin cells, the cell viability of filtered lysates was similar or higher to that of unfiltered lysates. HDB7072 lysates increased filaggrin expression in NHEKs. HDB1196 lysates showed DPPH radical-scavenging and antiwrinkle effects through the downregulation of matrix metalloproteinase-1 and upregulation of collagen type 1 in fibroblasts. HDB1014 lysates had antioxidant and antimelanogenic effects in B16F1 cells. Cell wall-removed probiotic lysates could be used as novel ingredients to improve skin aging and skin barrier issues.


Nutrients ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 199
Author(s):  
Victoria C. Daniels ◽  
Marcia H. Monaco ◽  
Mei Wang ◽  
Johanna Hirvonen ◽  
Henrik Max Jensen ◽  
...  

Human milk is rich in oligosaccharides that influence intestinal development and serve as prebiotics for the infant gut microbiota. Probiotics and 2’-fucosyllactose (2’-FL) added individually to infant formula have been shown to influence infant development, but less is known about the effects of their synbiotic administration. Herein, the impact of formula supplementation with 2’-fucosyllactose (2’-FL) and Bifidobacterium longum subsp. infantis Bi-26 (Bi-26), or 2’-FL + Bi-26 on weight gain, organ weights, and intestinal development in piglets was investigated. Two-day-old piglets (n = 53) were randomized in a 2 × 2 design to be fed a commercial milk replacer ad libitum without (CON) or with 1.0 g/L 2’-FL. Piglets in each diet were further randomized to receive either glycerol stock alone or Bi-26 (109 CFU) orally once daily. Body weights and food intake were monitored from postnatal day (PND) 2 to 33/34. On PND 34/35, animals were euthanized and intestine, liver and brain weights were assessed. Intestinal samples were collected for morphological analyses and measurement of disaccharidase activity. Dry matter of cecum and colon contents and Bifidobacterium longum subsp. infantis abundance by RT-PCR were also measured. All diets were well tolerated, and formula intake did not differ among the treatment groups. Daily body weights were affected by 2’-FL, Bi-26, and day, but no interaction was observed. There was a trend (p = 0.075) for greater total body weight gain in CON versus all other groups. Jejunal and ascending colon histomorphology were unaffected by treatment; however, there were main effects of 2’-FL to increase (p = 0.040) and Bi-26 to decrease (p = 0.001) ileal crypt depth. The addition of 2’-FL and/or Bi-26 to milk replacer supported piglet growth with no detrimental effects on body and organ weights, or intestinal structure and function.


Author(s):  
Jueyu Hou ◽  
Yunjing Tang ◽  
Yongjiang Chen ◽  
Danian Chen

Graves‘ disease (GD) is a clinical syndrome with an enlarged and overactive thyroid gland, an accelerated heart rate, Graves’ orbitopathy (GO), and pretibial myxedema (PTM). GO is the most common extrathyroidal complication of GD. GD/GO has a significant negative impact on the quality of life. GD is the most common systemic autoimmune disorder, mediated by autoantibodies to the thyroid-stimulating hormone receptor (TSHR). It is generally accepted that GD/GO results from complex interactions between genetic and environmental factors that lead to the loss of immune tolerance to thyroid antigens. However, the exact mechanism is still elusive. Systematic investigations into GD/GO animal models and clinical patients have provided important new insight into these disorders during the past 4 years. These studies suggested that gut microbiota may play an essential role in the pathogenesis of GD/GO. Antibiotic vancomycin can reduce disease severity, but fecal material transfer (FMT) from GD/GO patients exaggerates the disease in GD/GO mouse models. There are significant differences in microbiota composition between GD/GO patients and healthy controls. Lactobacillus, Prevotella, and Veillonella often increase in GD patients. The commonly used therapeutic agents for GD/GO can also affect the gut microbiota. Antigenic mimicry and the imbalance of T helper 17 cells (Th17)/regulatory T cells (Tregs) are the primary mechanisms proposed for dysbiosis in GD/GO. Interventions including antibiotics, probiotics, and diet modification that modulate the gut microbiota have been actively investigated in preclinical models and, to some extent, in clinical settings, such as probiotics (Bifidobacterium longum) and selenium supplements. Future studies will reveal molecular pathways linking gut and thyroid functions and how they impact orbital autoimmunity. Microbiota-targeting therapeutics will likely be an essential strategy in managing GD/GO in the coming years.


2021 ◽  
pp. 089033442110603
Author(s):  
Eliot N. Haddad ◽  
Lynn E. Ferro ◽  
Kathleen E. B. Russell ◽  
Kameron Y. Sugino ◽  
Jean M. Kerver ◽  
...  

Background: Previous research examined effects of human milk on the infant gut microbiota, but little attention has been given to the microbiota of lactating women. Research Aim: To determine associations between exclusive human milk feeding and gut microbiota characteristics in mothers and infants at 6-weeks postpartum. Methods: A sample of mother–infant dyads ( N = 24) provided fecal samples and questionnaire responses at 6-weeks postpartum as part of the Pregnancy, EAting & POstpartum Diapers study. Deoxyribonucleic acid was extracted from stool samples, followed by (V4) 16S ribosomal ribonucleic acid gene amplicon sequencing. Alpha and beta diversity, in addition to taxa differences, were compared by human milk exposure status, exclusive versus non-exclusive. A subset of dyads (those exclusively fed human milk; n = 14) was analyzed for shared bifidobacterial species using polymerase chain reaction. Results: Alpha diversity was significantly lower in exclusively human milk-fed infants. Maternal lactation status (exclusive vs. partial) and Shannon diversity were associated in univariate analysis but were no longer associated in multivariable regression including body mass index category in the model. Beta diversity (Sorensen dissimilarity) of fecal samples from women and infants was significantly associated with human milk feeding. Of six infants with Bifidobacterium longum subspecies longum in their fecal samples, all their mothers shared the same species. Conclusion: Maternal gut microbiotas differ by lactation status, a relationship potentially confounded by body mass index category. Further research is needed to identify whether lactation directly influences the maternal gut microbiota, which may be another mechanism by which lactation influences health.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Fang ◽  
Mengyun Yue ◽  
Jing Wei ◽  
Yun Wang ◽  
Daojun Hong ◽  
...  

Population aging is a prominent global problem in today’s society. However, there are currently no good methods to treat or prevent aging, so anti-aging research has crucial implications. In this research, we screened bacteria from centenarians, and finally selected four probiotics (Lactobacillus fermentum SX-0718, L. casei SX-1107, Bifidobacterium longum SX-1326, and B. animalis SX-0582) to form a probiotic combination. By using the senescence accelerated mouse prone 8 (SAMP8) model, the anti-aging effects of the probiotic combination were evaluated by using behavioural testing, neuroinflammation, intestinal inflammation, and intestinal microbiota. The results showed that probiotic combination improved the impaired spatial memory, motor dysfunction, and decreased exploratory behavior in aging mice. The probiotic combination inhibited Toll-like receptor 4 (TLR4)/nuclear factor kappa B (NFκB)-induced neuroinflammation and up-regulated the expression of Sirt 1 to protect hippocampal neurons. At the same time, the probiotic combination regulated the intestinal microbiota, reduced the relative abundance of Alistipes and Prevotella in SAMP8 mice, inhibited TLR4/NFκB-induced intestinal inflammation, and increased the expression of intestinal permeability related proteins zonula occludens-1 (ZO-1) and Occuldin. The anti-aging effects of the probiotic combination may be through the regulating intestinal microbiota and inhibiting TLR4/NFκB-induced inflammation. This research provides the basis and technical support for the future production and application of the probiotic combination.


Sign in / Sign up

Export Citation Format

Share Document