Reduced hepatic clearance of tissue type plasminogen activator (1-PA) is a key determinant of increased fibrinolytic activity during exercise

1994 ◽  
Vol 8 ◽  
pp. 26
Author(s):  
Z. Fras ◽  
D. Keber
1992 ◽  
Vol 67 (06) ◽  
pp. 697-701 ◽  
Author(s):  
J J Emeis ◽  
A Brouwer ◽  
R J Barelds ◽  
M A Horan ◽  
S K Durham ◽  
...  

SummaryAged rats are more susceptible to endotoxin-induced effects, including microthrombosis and platelet aggregation, than are young rats. To investigate whether changes in the fibrinolytic system might be involved, we investigated the fibrinolytic activity in plasma euglobulin fractions and tissues (lung and heart) of young (6-months old) and aged (24-months old) rats under baseline conditions and after challenge with endotoxin. Aged rats had lower plasma levels of tissue-type plasminogen activator (t-PA) and of urokinase-type PA (u-PA) activity. PA inhibitor (PAI) activity was higher in the plasma of aged rats, as was t-PA activity in lung and heart.Rats were treated with either a low dose (1 μg/kg) or a high dose (10 mg/kg) of endotoxin. Both treatments induced a transient phase of increased blood fibrinolytic activity, as evidenced by higher levels of tissue-type plasminogen activator (t-PA) activity and decreased levels of PA inhibitor (PAI) activity. Over time, the fibrinolytic activity decreased, probably due to increased levels of PA inhibitor.Both the early increase in t-PA activity, and the subsequent increase in PAI activity, were more pronounced in the aged rats, as compared with the younger rats, after the high dose of endotoxin. The aged rats also responded to an injection of interleukin-1β or tumor necrosis factor-α with a larger increase of PAI activity than did the younger rats.Together the data suggest that, compared to young rats, aged rats have a decreased base-line plasma fibrinolytic activity, while their fibrinolytic system is more responsive to challenge by endotoxin and cytokines.


1992 ◽  
Vol 285 (3) ◽  
pp. 799-804 ◽  
Author(s):  
E Stang ◽  
N Roos ◽  
M Schlüter ◽  
T Berg ◽  
J Krause

In the liver, tissue-type plasminogen activator (t-PA) is endocytosed by hepatic parenchymal (PC), endothelial (EC) and Kupffer (KC) cells. Although the endocytosis is receptor-mediated, it remains a matter of discussion which receptors are involved in this catabolic process. To evaluate the role of a protein-specific receptor, as well as the possible involvement of the galactose receptor on PC and the mannose receptor on EC, we have employed different glycosylation variants of t-PA in biochemical and immunocytochemical studies. Partial or total removal of carbohydrate side-chains by endoglycosidases did not prevent clearance and hepatic endocytosis of t-PA by either of the liver cell types. Blockade of the galactose and mannose receptors by co-application of a large excess of the glycoprotein ovalbumin remained without effect on the binding and uptake of t-PA by hepatic cells. However, the contribution of different liver cell types to the hepatic clearance of t-PA was to a certain extent dependent on the type of oligosaccharide chains removed. The mannose receptor on EC is partially responsible for the clearance of t-PA by this cell type, whereas the galactose receptor does not seem to be involved in this process. The results obtained in this study further demonstrate that the major portion of the hepatic catabolism of t-PA is independent of its carbohydrate side-chains.


Sign in / Sign up

Export Citation Format

Share Document