Rate constants for rotational excitation of ortho- and para-NH3 colliding with 4He on an Ab initio potential energy surface

1985 ◽  
Vol 98 (3) ◽  
pp. 397-408 ◽  
Author(s):  
Gert Due Billing ◽  
Lise Lotte Poulsen ◽  
Geerd H.F. Diercksen
Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 994
Author(s):  
Joaquin Espinosa-Garcia ◽  
Cipriano Rangel ◽  
Moises Garcia-Chamorro ◽  
Jose C. Corchado

Based on a combination of valence-bond and molecular mechanics functions which were fitted to high-level ab initio calculations, we constructed an analytical full-dimensional potential energy surface, named PES-2020, for the hydrogen abstraction title reaction for the first time. This surface is symmetrical with respect to the permutation of the three hydrogens in ammonia, it presents numerical gradients and it improves the description presented by previous theoretical studies. In order to analyze its quality and accuracy, stringent tests were performed, exhaustive kinetics and dynamics studies were carried out using quasi-classical trajectory calculations, and the results were compared with the available experimental evidence. Firstly, the properties (geometry, vibrational frequency and energy) of all stationary points were found to reasonably reproduce the ab initio information used as input; due to the complicated topology with deep wells in the entrance and exit channels and a “submerged” transition state, the description of the intermediate complexes was poorer, although it was adequate to reasonably simulate the kinetics and dynamics of the title reaction. Secondly, in the kinetics study, the rate constants simulated the experimental data in the wide temperature range of 25–700 K, improving the description presented by previous theoretical studies. In addition, while previous studies failed in the description of the kinetic isotope effects, our results reproduced the experimental information. Finally, in the dynamics study, we analyzed the role of the vibrational and rotational excitation of the CN(v,j) reactant and product angular scattering distribution. We found that vibrational excitation by one quantum slightly increased reactivity, thus reproducing the only experimental measurement, while rotational excitation strongly decreased reactivity. The scattering distribution presented a forward-backward shape, associated with the presence of deep wells along the reaction path. These last two findings await experimental confirmation.


1996 ◽  
Vol 262 (3-4) ◽  
pp. 175-182 ◽  
Author(s):  
F.J. Aoiz ◽  
L. Bañares ◽  
V.J. Herrero ◽  
V.Sáez Rábanos ◽  
K. Stark ◽  
...  

2013 ◽  
Vol 12 (06) ◽  
pp. 1350054 ◽  
Author(s):  
YANG YANG ◽  
RUI LIU ◽  
RENZHUO WAN ◽  
MINGHUI YANG

Initial-state-selected time-dependent wave packet dynamics studies have been performed for the H 2 + NH 2 → H + NH 3 reaction with a seven-dimensional model on a new interpolated ab initio potential energy surface (PES). The PES is constructed using modified Shepard interpolation Scheme and contains 1967 data points with ab initio calculations carried out on UCCSD(T)/aug-cc-pVTZ level. In the seven-dimensional model, NH 2 group keeps C2v symmetry and two NH bonds are fixed at their equilibrium values. The total reaction probabilities are calculated when (1) the two reactants are initially at their ground states; (2) NH 2 bending mode is excited, and (3) H 2 is on its first vibrational excited state. The integral cross sections are also reported for these initial states with centrifugal-sudden approximation. Thermal rate constants are calculated for the temperature range of 200–2000 K and compared with the previous calculated values and available experimental data. Good agreements between theory and experiments for the rate constants at intermediate temperature are achieved on this PES.


Sign in / Sign up

Export Citation Format

Share Document