scholarly journals The NP-completeness of steiner tree and dominating set for chordal bipartite graphs

1987 ◽  
Vol 53 (2-3) ◽  
pp. 257-265 ◽  
Author(s):  
Haiko Müller ◽  
Andreas Brandstädt
2012 ◽  
Vol 04 (03) ◽  
pp. 1250045 ◽  
Author(s):  
D. PRADHAN

In this paper, we consider minimum total domination problem along with two of its variations namely, minimum signed total domination problem and minimum minus total domination problem for chordal bipartite graphs. In the minimum total domination problem, the objective is to find a smallest size subset TD ⊆ V of a given graph G = (V, E) such that |TD∩NG(v)| ≥ 1 for every v ∈ V. In the minimum signed (minus) total domination problem for a graph G = (V, E), it is required to find a function f : V → {-1, 1} ({-1, 0, 1}) such that f(NG(v)) = ∑u∈NG(v)f(u) ≥ 1 for each v ∈ V, and the cost f(V) = ∑v∈V f(v) is minimized. We first show that for a given chordal bipartite graph G = (V, E) with a weak elimination ordering, a minimum total dominating set can be computed in O(n + m) time, where n = |V| and m = |E|. This improves the complexity of the minimum total domination problem for chordal bipartite graphs from O(n2) time to O(n + m) time. We then adopt a unified approach to solve the minimum signed (minus) total domination problem for chordal bipartite graphs in O(n + m) time. The method is also able to solve the minimum k-tuple total domination problem for chordal bipartite graphs in O(n + m) time. For a fixed integer k ≥ 1 and a graph G = (V, E), the minimum k-tuple total domination problem is to find a smallest subset TDk ⊆ V such that |TDk ∩ NG(v)| ≥ k for every v ∈ V.


2020 ◽  
Vol 18 (1) ◽  
pp. 873-885
Author(s):  
Gülnaz Boruzanlı Ekinci ◽  
Csilla Bujtás

Abstract Let k be a positive integer and let G be a graph with vertex set V(G) . A subset D\subseteq V(G) is a k -dominating set if every vertex outside D is adjacent to at least k vertices in D . The k -domination number {\gamma }_{k}(G) is the minimum cardinality of a k -dominating set in G . For any graph G , we know that {\gamma }_{k}(G)\ge \gamma (G)+k-2 where \text{Δ}(G)\ge k\ge 2 and this bound is sharp for every k\ge 2 . In this paper, we characterize bipartite graphs satisfying the equality for k\ge 3 and present a necessary and sufficient condition for a bipartite graph to satisfy the equality hereditarily when k=3 . We also prove that the problem of deciding whether a graph satisfies the given equality is NP-hard in general.


2012 ◽  
Vol 312 (14) ◽  
pp. 2146-2152
Author(s):  
Mieczysław Borowiecki ◽  
Ewa Drgas-Burchardt

Sign in / Sign up

Export Citation Format

Share Document