strong chromatic index
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 9)

H-INDEX

10
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Wouter Cames Batenburg ◽  
Rémi Joannis de Verclos ◽  
Ross J. Kang ◽  
François Pirot

Author(s):  
Vikram Srinivasan Thiru ◽  
S. Balaji

The strong edge coloring of a graph G is a proper edge coloring that assigns a different color to any two edges which are at most two edges apart. The minimum number of color classes that contribute to such a proper coloring is said to be the strong chromatic index of G. This paper defines the strong chromatic index for the generalized Jahangir graphs and the generalized Helm graphs.


Author(s):  
Michał Dębski ◽  
Małgorzata Śleszyńska-Nowak

AbstractFor a graph G, $$L(G)^2$$ L ( G ) 2 is the square of the line graph of G – that is, vertices of $$L(G)^2$$ L ( G ) 2 are edges of G and two edges $$e,f\in E(G)$$ e , f ∈ E ( G ) are adjacent in $$L(G)^2$$ L ( G ) 2 if at least one vertex of e is adjacent to a vertex of f and $$e\ne f$$ e ≠ f . The strong chromatic index of G, denoted by $$s'(G)$$ s ′ ( G ) , is the chromatic number of $$L(G)^2$$ L ( G ) 2 . A strong clique in G is a clique in $$L(G)^2$$ L ( G ) 2 . Finding a bound for the maximum size of a strong clique in a graph with given maximum degree is a problem connected to a famous conjecture of Erdős and Nešetřil concerning strong chromatic index of graphs. In this note we prove that a size of a strong clique in a claw-free graph with maximum degree $$\varDelta $$ Δ is at most $$\varDelta ^2 + \frac{1}{2}\varDelta $$ Δ 2 + 1 2 Δ . This result improves the only known result $$1.125\varDelta ^2+\varDelta $$ 1.125 Δ 2 + Δ , which is a bound for the strong chromatic index of claw-free graphs.


2020 ◽  
Vol 284 ◽  
pp. 53-60
Author(s):  
Michał Dębski ◽  
Konstanty Junosza-Szaniawski ◽  
Małgorzata Śleszyńska-Nowak

Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1265
Author(s):  
Ming Chen ◽  
Lianying Miao ◽  
Shan Zhou

A strong edge coloring of a graph G is a proper edge coloring such that every color class is an induced matching. In 2018, Yang and Wu proposed a conjecture that every generalized Petersen graph P(n,k) with k≥4 and n>2k can be strong edge colored with (at most) seven colors. Although the generalized Petersen graph P(n,k) is a kind of special graph, the strong chromatic index of P(n,k) is still unknown. In this paper, we support the conjecture by showing that the strong chromatic index of every generalized Petersen graph P(n,k) with k≥4 and n>2k is at most 9.


2020 ◽  
Vol 40 (1) ◽  
pp. 227-233
Author(s):  
Lily Chen ◽  
Shumei Chen ◽  
Ren Zhao ◽  
Xiangqian Zhou

2019 ◽  
Vol 11 (06) ◽  
pp. 1950064
Author(s):  
Kai Lin ◽  
Min Chen ◽  
Dong Chen

Let [Formula: see text] be a graph. An [Formula: see text]-relaxed strong edge [Formula: see text]-coloring is a mapping [Formula: see text] such that for any edge [Formula: see text], there are at most [Formula: see text] edges adjacent to [Formula: see text] and [Formula: see text] edges which are distance two apart from [Formula: see text] assigned the same color as [Formula: see text]. The [Formula: see text]-relaxed strong chromatic index, denoted by [Formula: see text], is the minimum number [Formula: see text] of an [Formula: see text]-relaxed strong [Formula: see text]-edge-coloring admitted by [Formula: see text]. [Formula: see text] is called [Formula: see text]-relaxed strong edge [Formula: see text]-colorable if for a given list assignment [Formula: see text], there exists an [Formula: see text]-relaxed strong edge coloring [Formula: see text] of [Formula: see text] such that [Formula: see text] for all [Formula: see text]. If [Formula: see text] is [Formula: see text]-relaxed strong edge [Formula: see text]-colorable for any list assignment with [Formula: see text] for all [Formula: see text], then [Formula: see text] is said to be [Formula: see text]-relaxed strong edge [Formula: see text]-choosable. The [Formula: see text]-relaxed strong list chromatic index, denoted by [Formula: see text], is defined to be the smallest integer [Formula: see text] such that [Formula: see text] is [Formula: see text]-relaxed strong edge [Formula: see text]-choosable. In this paper, we prove that every planar graph [Formula: see text] with girth 6 satisfies that [Formula: see text]. This strengthens a result which says that every planar graph [Formula: see text] with girth 7 and [Formula: see text] satisfies that [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document