Copolymerization of lobster lactate dehydrogenase isoenzymes with pig H4 isoenzyme in vitro

1976 ◽  
Vol 4 (3) ◽  
pp. 203-204 ◽  
Author(s):  
G. Trausch ◽  
E. Schoffeniels
1981 ◽  
Vol 27 (8) ◽  
pp. 1453-1455 ◽  
Author(s):  
F Van Lente ◽  
A Marchand ◽  
R S Galen

Abstract We determined the LD-1/LD-2 isoenzyme ratio in hemolysates of erythrocytes by electrophoresis on cellulose acetate and on agarose. A ratio exceeding 1.0 was found with the former but not the latter. Results were similar for in vitro models of hemolytic disorders. Using cellulose acetate electrophoresis, we determined the predictive value of data on total LD activity and of the LD-1/LD-2 ratio in diagnosis of hemolytic disease in 100 patients. The sensitivity of the "flipped" LD-1/LD-2 ratio was only 58%, the specificity was 93%, and the predictive value was 74% for diagnosis of hemolytic disease. A normal total LD activity is highly predictive (92%) for ruling at the presence of hemolytic disease.


1981 ◽  
Vol 198 (3) ◽  
pp. 587-593 ◽  
Author(s):  
T Kooistra ◽  
K E Williams

The pinocytic uptake of 125I-labelled porcine lactate dehydrogenase isoenzymes H4 and M4 by 17.5-day rat visceral yolk sac incubated in vitro was saturable and binding obeyed Michaelis-Menten kinetics. The uptake characteristics of the two isoenzymes were very similar. For the H4 and the M4 isoenzymes, the dissociation constants of the protein-plasma-membrane complex were 0.62 microM and 0.84 microM respectively, and the maximum rates of uptake 0.13 and 0.26 nmol/mg of yolk-sac protein per h respectively. These findings contrast with those from studies in vivo, which show the M4 form is taken up by rat liver sinusoidal cells at a much higher rate than the H4 form, and point to different recognition systems for the adsorptive pinocytosis of simple non-conjugate proteins in yolk-sac epithelial cells and liver sinusoidal cells. Competition experiments indicate that binding of the H4 isoenzyme to the yolk-sac cells is restricted to hydrophobic interactions, whereas the binding of the M4 isoenzyme involves hydrophobic as well as positively charged sites on the protein molecules.


1992 ◽  
Vol 20 (2) ◽  
pp. 266-270
Author(s):  
Jens-Uwe Voss ◽  
Hasso Seibert

The toxicity of allyl alcohol and several glycols (ethylene glycol, 1,2-propanediol, 1,3-propanediol, methoxyethanol, and the glycol ether dioxane) was studied in cultures of 3T3 cells and in co-cultures of 3T3 cells with microcarrier-attached hepatocytes. Metabolism-mediated effects on the cytotoxicity to 3T3 cells were recorded by differences in the growth of the cultures exposed in the presence or absence of hepatocytes. Hepatocyte viability was determined by depletion of intracellular lactate dehydrogenase and effects on the biotransformation ability of hepatocytes were assessed by determination of O-deethylation of 7-ethoxycoumarin (EOD activity). Allyl alcohol was the only substance more toxic to the hepatocytes than to 3T3 cells cultured in the absence of hepatocytes. Toxicity to 3T3 cells of allyl alcohol, ethylene glycol, and 1,3-propanediol, but not of 1,2-propanediol, methoxyethanol and dioxane, was markedly enhanced when the cells were co-cultured with hepatocytes. The results indicate that the toxicity of allyl alcohol, ethylene glycol, and 1,3-propanediol, to 3T3 cells depends on the formation of active metabolites. For ethylene glycol and 1,3-propanediol, growth of 3T3 cells in co-cultures was reduced at concentrations without effects on hepatocyte viability. Co-culture of 3T3 cells with microcarrier-attached rat hepatocytes represents a suitable approach for the in vitro evaluation of metabolism-mediated cytotoxicity.


2006 ◽  
Vol 50 (10) ◽  
pp. 3343-3349 ◽  
Author(s):  
Halima Kaddouri ◽  
Serge Nakache ◽  
Sandrine Houzé ◽  
France Mentré ◽  
Jacques Le Bras

ABSTRACT The extension of drug resistance among malaria-causing Plasmodium falciparum parasites in Africa necessitates implementation of new combined therapeutic strategies. Drug susceptibility phenotyping requires precise measurements. Until recently, schizont maturation and isotopic in vitro assays were the only methods available, but their use was limited by technical constraints. This explains the revived interest in the development of replacement methods, such as the Plasmodium lactate dehydrogenase (pLDH) immunodetection assay. We evaluated a commercially controlled pLDH enzyme-linked immunosorbent assay (ELISA; the ELISA-Malaria antigen test; DiaMed AG, Cressier s/Morat, Switzerland) to assess drug susceptibility in a standard in vitro assay using fairly basic laboratory equipment to study the in vitro resistance of malaria parasites to major antimalarials. Five Plasmodium falciparum clones and 121 clinical African isolates collected during 2003 and 2004 were studied by the pLDH ELISA and the [8-3H]hypoxanthine isotopic assay as a reference with four antimalarials. Nonlinear regression with a maximum effect model was used to estimate the 50% inhibitory concentration (IC50) and its confidence intervals. The two methods were observed to have similar reproducibilities, but the pLDH ELISA demonstrated a higher sensitivity. The high correlation (r = 0.98) and the high phenotypic agreement (κ = 0.88) between the two methods allowed comparison by determination of the IC50s. Recently collected Plasmodium falciparum African isolates were tested by pLDH ELISA and showed drug resistance or decreased susceptibilities of 62% to chloroquine and 11.5% to the active metabolite of amodiaquine. No decreased susceptibility to lumefantrine or the active metabolite of artemisinin was detected. The availability of this simple and highly sensitive pLDH immunodetection assay will provide an easier method for drug susceptibility testing of malaria parasites.


2012 ◽  
Vol 54 (2) ◽  
pp. 643-650 ◽  
Author(s):  
Marwa Drira ◽  
Walid Saibi ◽  
Faïçal Brini ◽  
Ali Gargouri ◽  
Khaled Masmoudi ◽  
...  

2006 ◽  
Vol 31 (4) ◽  
pp. 541-548 ◽  
Author(s):  
Laura O. Saad ◽  
Sandra R. Mirandola ◽  
Evelise N. Maciel ◽  
Roger F. Castilho

Sign in / Sign up

Export Citation Format

Share Document