High-temperature steam electrolysis using SrCeO3-based proton conductive solid electrolyte

1987 ◽  
Vol 12 (2) ◽  
pp. 73-77 ◽  
Author(s):  
H IWAHARA ◽  
H UCHIDA ◽  
I YAMASAKI
2016 ◽  
Vol 94 (9) ◽  
pp. 1648-1656 ◽  
Author(s):  
Ehsan Mostafavi ◽  
Jennifer H. Pauls ◽  
C. Jim Lim ◽  
Nader Mahinpey

2017 ◽  
Vol 42 (17) ◽  
pp. 12104-12110 ◽  
Author(s):  
Lijuan Zhang ◽  
Zhihong Wang ◽  
Zhiqun Cao ◽  
Lin Zhu ◽  
Pengzhang Li ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 736
Author(s):  
Man Li ◽  
Tao Chen ◽  
Seunghyun Song ◽  
Yang Li ◽  
Joonho Bae

The challenge of safety problems in lithium batteries caused by conventional electrolytes at high temperatures is addressed in this study. A novel solid electrolyte (HKUST-1@IL-Li) was fabricated by immobilizing ionic liquid ([EMIM][TFSI]) in the nanopores of a HKUST-1 metal–organic framework. 3D angstrom-level ionic channels of the metal–organic framework (MOF) host were used to restrict electrolyte anions and acted as “highways” for fast Li+ transport. In addition, lower interfacial resistance between HKUST-1@IL-Li and electrodes was achieved by a wetted contact through open tunnels at the atomic scale. Excellent high thermal stability up to 300 °C and electrochemical properties are observed, including ionic conductivities and Li+ transference numbers of 0.68 × 10-4 S·cm-1 and 0.46, respectively, at 25 °C, and 6.85 × 10-4 S·cm-1 and 0.68, respectively, at 100 °C. A stable Li metal plating/stripping process was observed at 100 °C, suggesting an effectively suppressed growth of Li dendrites. The as-fabricated LiFePO4/HKUST-1@IL-Li/Li solid-state battery exhibits remarkable performance at high temperature with an initial discharge capacity of 144 mAh g-1 at 0.5 C and a high capacity retention of 92% after 100 cycles. Thus, the solid electrolyte in this study demonstrates promising applicability in lithium metal batteries with high performance under extreme thermal environmental conditions.


2021 ◽  
pp. 109722
Author(s):  
Wenhuai Zhang ◽  
Yue Qian ◽  
Rongrong Sun ◽  
Xiaodong Lin ◽  
Meiyi Yao ◽  
...  

RSC Advances ◽  
2014 ◽  
Vol 4 (36) ◽  
pp. 18924-18929 ◽  
Author(s):  
Xun Hu ◽  
Lijun Zhang ◽  
Dehua Dong ◽  
Gongxuan Lu

A reactor with constant-temperature and stepwise decreasing-temperature zones is developed, which can catalyze steam reforming of bio-oil derived organics and methane to produce hydrogen-rich gas with only trace CO in a wide temperature region.


2010 ◽  
Vol 3 (10) ◽  
pp. 1382 ◽  
Author(s):  
Qingxi Fu ◽  
Corentin Mabilat ◽  
Mohsine Zahid ◽  
Annabelle Brisse ◽  
Ludmila Gautier

Sign in / Sign up

Export Citation Format

Share Document