scholarly journals Possible constraints on SUSY-model parameters from direct dark matter search

1994 ◽  
Vol 329 (1) ◽  
pp. 5-9 ◽  
Author(s):  
V.A. Bednyakov ◽  
H.V. Klapdor-Kleingrothaus ◽  
S.G. Kovalenko
2021 ◽  
Author(s):  
Timur Bikbaev ◽  
Maxim Khlopov ◽  
Andrey Mayorov

2002 ◽  
Vol 17 (12n13) ◽  
pp. 1829-1840 ◽  
Author(s):  
ALDO MORSELLI

The direct detection of annihilation products in cosmic rays offers an alternative way to search for supersymmetric dark matter particles candidates. The study of the spectrum of gamma-rays, antiprotons and positrons offers good possibilities to perform this search in a significant portion of the Minimal Supersymmetric Standard Model parameters space. In particular the EGRET team have seen a convincing signal for a strong excess of emission from the galactic center that have not easily explanation with standard processes. We will review the achievable limits with the experiment GLAST taking into accounts the LEP results and we will compare this method with the antiproton and positrons experiments, the direct underground detection and with future experiments at LHC.


2020 ◽  
Vol 200 (5-6) ◽  
pp. 428-436
Author(s):  
G. Angloher ◽  
P. Carniti ◽  
I. Dafinei ◽  
N. Di Marco ◽  
A. Fuss ◽  
...  

Abstract COSINUS (Cryogenic Observatory for SIgnatures seen in Next-generation Underground Searches) is an experiment employing cryogenic calorimeters, dedicated to direct dark matter search in underground laboratories. Its goal is to cross-check the annual modulation signal the DAMA collaboration has been detecting for about 20 years (Bernabei et al. in Nucl Part Phys Proc 303–305:74–79, 2018. 10.1016/j.nuclphysbps.2019.03.015) and which has been ruled out by other experiments in certain dark matter scenarios. COSINUS can provide a model-independent test by the use of the same target material (NaI), with the additional chance of discriminating $$\beta /\gamma$$ β / γ events from nuclear recoils on an event-by-event basis, by the application of a well-established temperature sensor technology developed within the CRESST collaboration. Each module is constituted by two detectors: the light detector, that is a silicon beaker equipped with a transition edge sensor (TES), and the phonon detector, a small cubic NaI crystal interfaced with a carrier of a harder material (e.g. $$\hbox {CdWO}_4$$ CdWO 4 ), also instrumented with a TES. This technology had so far never been applied to NaI crystals because of several well-known obstacles, and COSINUS is the first experiment which succeeded in operating NaI crystals as cryogenic calorimeters. Here, we present the COSINUS project, describe the achievements and the challenges of the COSINUS prototype development and discuss the status and the perspectives of this NaI-based cryogenic frontier.


2019 ◽  
Vol 789 ◽  
pp. 45-53 ◽  
Author(s):  
K. Abe ◽  
K. Hiraide ◽  
K. Ichimura ◽  
Y. Kishimoto ◽  
K. Kobayashi ◽  
...  

2006 ◽  
Vol 120 (1-4) ◽  
pp. 495-498 ◽  
Author(s):  
G. Azuelos ◽  
M. Barnabé-Heider ◽  
E. Behnke ◽  
K. Clark ◽  
M. Di Marco ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document