scholarly journals Sterile neutrinos and future solar neutrino experiments

1994 ◽  
Vol 320 (3-4) ◽  
pp. 323-328 ◽  
Author(s):  
S.M. Bilenky ◽  
C. Giunti
2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Y. H. Ahn

Abstract We suggest a would-be solution to the solar neutrino tension why solar neutrinos appear to mix differently from reactor antineutrinos, in theoretical respect. To do that, based on an extended theory with light sterile neutrinos added we derive a general transition probability of neutrinos born with one flavor tuning into a different flavor. Three new mass-squared differences are augmented in the extended theory: $$ \Delta {m}_{\mathrm{ABL}}^2\lesssim \mathcal{O}\left({10}^{-11}\right) $$ Δ m ABL 2 ≲ O 10 − 11 eV2 optimized at astronomical-scale baseline (ABL) oscillation experiments and one $$ \Delta {m}_{\mathrm{SBL}}^2\lesssim \mathcal{O}(1) $$ Δ m SBL 2 ≲ O 1 eV2 optimized at reactor short-baseline (SBL) oscillation experiments. With a so-called composite matter effect that causes a neutrino flavor change via the effects of sinusoidal oscillation including the Mikheyev-Smirnov-Wolfenstein matter effect, we find that the value of ∆m2 measured from reactor antineutrino experiments can be fitted with that from the 8B solar neutrino experiments for roughly $$ \Delta {m}_1^2\lesssim {10}^{-13} $$ Δ m 1 2 ≲ 10 − 13 eV2 and $$ \Delta {m}_2^2\simeq \mathcal{O}\left({10}^{-11}\right) $$ Δ m 2 2 ≃ O 10 − 11 eV2. Nonetheless, we find that the current data (solar neutrino alone) is not precise enough to test the proposed scenario. Future precise measurements of 8B and pep solar neutrinos may confirm and/or improve the value of $$ \Delta {m}_2^2 $$ Δ m 2 2 .


1993 ◽  
Vol 08 (14) ◽  
pp. 1273-1284 ◽  
Author(s):  
JOÃO PULIDO

The possibility of unconventional neutrino scattering in the Sun via flavor changing neutral currents as a possible source of the solar neutrino deficit is investigated. If the effect is really significant, a resonant process will occur. Taking into account the neutrino deficit reported by the solar neutrino experiments (Kamiokande II, SAGE Gallex), one finds Δ2m21 = (0.6–1.4) × 10−5 eV 2 with no vacuum mixing and 0.16 ≤ fex ≤ 0.34 where fex is the lepton violating coupling. Our understanding of the neutrino phenomenon in the Sun may be improved through accuracy improvements in experiments measuring νee− elastic scattering or others searching for exotic lepton decays.


Sign in / Sign up

Export Citation Format

Share Document