lepton decays
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 13)

H-INDEX

18
(FIVE YEARS 0)

2021 ◽  
Vol 104 (9) ◽  
Author(s):  
Wen Chen ◽  
Yu Jia ◽  
Zhewen Mo ◽  
Jichen Pan ◽  
Xiaonu Xiong

2021 ◽  
Author(s):  
Alejandro De Yta Hernández ◽  
Eduard De La Cruz Burelo ◽  
Michel Hernández Villanueva

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
◽  
K. Uno ◽  
K. Hayasaka ◽  
K. Inami ◽  
I. Adachi ◽  
...  

Abstract Charged lepton flavor violation is forbidden in the Standard Model but possible in several new physics scenarios. In many of these models, the radiative decays τ± → ℓ±γ (ℓ = e, μ) are predicted to have a sizeable probability, making them particularly interesting channels to search at various experiments. An updated search via τ± → ℓ±γ using full data of the Belle experiment, corresponding to an integrated luminosity of 988 fb−1, is reported for charged lepton flavor violation. No significant excess over background predictions from the Standard Model is observed, and the upper limits on the branching fractions, $$ \mathcal{B} $$ B (τ± → μ±γ) ≤ 4.2 × 10−8 and $$ \mathcal{B} $$ B (τ± → e±γ) ≤ 5.6 × 10−8, are set at 90% confidence level.


2021 ◽  
Vol 13 (3) ◽  
pp. 1057-1074
Author(s):  
P. Verma ◽  
- Vivekanand ◽  
K. Chaturvedi

The search for lepton flavor violation in charged lepton decays is a highly sensitive tool to look for physics beyond the Standard Model. Among the possible processes, µ-decays are considered to have the largest discovery potential in most of the standard model extensions. Many searches have been performed in the past, but no evidence has been found so far. In this paper, we have reviewed the current theoretical and experimental status of the field of muon to electron decay and its potential to search for new physics beyond the Standard Model. Future prospects of experiments for further progress in this field are also discussed.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Cédric Delaunay ◽  
Teng Ma ◽  
Yotam Soreq

Abstract We consider models of decaying spin-1 dark matter whose dominant coupling to the standard model sector is through a dark-Higgs Yukawa portal connecting a TeV-scale vector-like lepton to the standard model (right-handed) electron. Below the electron-positron threshold, dark matter has very slow, loop-suppressed decays to photons and (electron) neutrinos, and is stable on cosmological time-scale for sufficiently small gauge coupling values. Its relic abundance is set by in-equilibrium dark lepton decays, through the freeze-in mechanism. We show that this model accommodates the observed dark matter abundance for natural values of its parameters and a dark matter mass in the ∼ 5 keV to 1 MeV range, while evading constraints from direct detection, indirect detection, stellar cooling and cosmology. We also consider the possibility of a nonzero gauge kinetic mixing with the standard model hypercharge field, which is found to yield a mild impact on the model’s phenomenology.


2021 ◽  
Vol 103 (1) ◽  
Author(s):  
J. L. Gutiérrez Santiago ◽  
G. López Castro ◽  
P. Roig

2020 ◽  
Vol 102 (11) ◽  
Author(s):  
E. De La Cruz-Burelo ◽  
A. De Yta-Hernandez ◽  
M. Hernandez-Villanueva

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Freya Blekman ◽  
Nishita Desai ◽  
Anastasiia Filimonova ◽  
Abanti Ranadhir Sahasransu ◽  
Susanne Westhoff

Abstract Soft displaced leptons are representative collider signatures of compressed dark sectors with feeble couplings to the standard model. Prime targets are dark matter scenarios where co-scattering or co-annihilation sets the relic abundance upon freeze-out. At the LHC, searches for soft displaced leptons are challenged by a large background from hadron or tau lepton decays. In this article, we present an analysis tailored for displaced leptons with a low transverse momentum threshold at 20 GeV. Using a neural network, we perform a comprehensive analysis of the event kinematics, including a study of the expected detection efficiencies and backgrounds at small momenta. Our results show that weak-scale particles decaying into soft leptons with decay lengths between 1 mm and 1 m can be probed with LHC Run 2 data. This motivates the need for dedicated triggers that maximize the sensitivity to displaced soft leptons.


2019 ◽  
Author(s):  
Gabriel Lopez Castro

Originally thought as clean processes to study the hadronization of the weak currents, semileptonic tau lepton decays can be useful to set constraints on non-standard (NS) weak interactions. We study the effects of new interactions in \tau^- \to (\pi^-\eta,\pi^-\pi^0)\nu_{\tau}τ−→(π−η,π−π0)ντ decays and find that they are sensitive probes of these New Physics effects in the form of scalar and tensor interactions, respectively. Further improved measurements at Belle II will set limits on these scalar interactions that are similar to other low and high energy processes.


Sign in / Sign up

Export Citation Format

Share Document