Perspectives on solar neutrino experiments

1994 ◽  
Vol 35 ◽  
pp. 340-350
Author(s):  
A.B. McDonald
1993 ◽  
Vol 08 (14) ◽  
pp. 1273-1284 ◽  
Author(s):  
JOÃO PULIDO

The possibility of unconventional neutrino scattering in the Sun via flavor changing neutral currents as a possible source of the solar neutrino deficit is investigated. If the effect is really significant, a resonant process will occur. Taking into account the neutrino deficit reported by the solar neutrino experiments (Kamiokande II, SAGE Gallex), one finds Δ2m21 = (0.6–1.4) × 10−5 eV 2 with no vacuum mixing and 0.16 ≤ fex ≤ 0.34 where fex is the lepton violating coupling. Our understanding of the neutrino phenomenon in the Sun may be improved through accuracy improvements in experiments measuring νee− elastic scattering or others searching for exotic lepton decays.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Ankush ◽  
Rishu Verma ◽  
Gazal Sharma ◽  
B. C. Chauhan

There are compelling evidences for the existence of a fourth degree of freedom of neutrinos, i.e., sterile neutrino. In the recent studies the role of sterile component of neutrinos has been found to be crucial, not only in particle physics, but also in astrophysics and cosmology. This has been proposed to be one of the potential candidates of dark matter. In this work we investigate the updated solar neutrino data available from all the relevant experiments including Borexino and KamLAND solar phase in a model independent way and obtain bounds on the sterile neutrino component present in the solar neutrino flux. The mystery of the missing neutrinos is further deepening as subsequent experiments are coming up with their results. The energy spectrum of solar neutrinos, as predicted by Standard Solar Models (SSM), is seen by neutrino experiments at different parts as they are sensitive to various neutrino energy ranges. It is interesting to note that more than 98% of the calculated standard model solar neutrino flux lies below 1 MeV. Therefore, the study of low energy neutrinos can give us better understanding and the possibility of knowing about the presence of antineutrino and sterile neutrino components in solar neutrino flux. As such, this work becomes interesting as we include the data from medium energy (~1 MeV) experiments, i.e., Borexino and KamLAND solar phase. In our study we retrieve the bounds existing in literature and rather provide more stringent limits on sterile neutrino (νs) flux available in solar neutrino data.


1999 ◽  
Vol 14 (12) ◽  
pp. 1953-1974 ◽  
Author(s):  
T. SAKAI ◽  
O. INAGAKI ◽  
T. TESHIMA

We analyze the solar, terrestrial and atmospheric neutrino experiments including SuperKamiokande data using the three-flavor neutrinos framework and obtain the allowed region for parameters [Formula: see text]. In solar neutrino experiments, we obtain the large angle solution [Formula: see text] and small angle solution (3×10-6-1.2×10-5 eV 2, 0.003-0.01) for θ13=0°-20°. From the terrestrial and atmospheric neutrino experiments including the sub-GeV and multi-GeV zenith angle dependence in SuperKamiokande 535 days data, we found that the νμ-ντ mixing is large and the range of [Formula: see text] as 0.02~0.0002  eV 2. There is no significant difference between large θ12 angle solution and small one.


2004 ◽  
Vol 19 (08) ◽  
pp. 1167-1179 ◽  
Author(s):  
A. BELLERIVE

This paper reviews the constraints on the solar neutrino mixing parameters with data collected by the Homestake, SAGE, GALLEX, Kamiokande, SuperKamiokande, and SNO experiments. An emphasis will be given to the global solar neutrino analyses in terms of matter-enhanced oscillation of two active flavors. The results to-date, including both solar model dependent and independent measurements, indicate that electron neutrinos are changing to other active types on route to the Earth from the Sun. The total flux of solar neutrinos is found to be in very good agreement with solar model calculations. Future measurements will focus on greater accuracy for mixing parameters and on better sensitivity to low neutrino energies.


Sign in / Sign up

Export Citation Format

Share Document