Optical-model calculations with a realistic nucleon-nucleon interaction

1972 ◽  
Vol 193 (2) ◽  
pp. 593-609 ◽  
Author(s):  
Gerald M. Lerner ◽  
Jerry B. Marion
2021 ◽  
Vol 57 (9) ◽  
Author(s):  
Shihang Shen ◽  
Timo A. Lähde ◽  
Dean Lee ◽  
Ulf-G. Meißner

AbstractWe present lattice calculations of the low-lying spectrum of $$^{12}$$ 12 C using a simple nucleon–nucleon interaction that is independent of spin and isospin and therefore invariant under Wigner’s SU(4) symmetry. We find strong signals for all excited states up to $$\sim 15$$ ∼ 15  MeV above the ground state, and explore the structure of each state using a large variety of $$\alpha $$ α cluster and harmonic oscillator trial states, projected onto given irreducible representations of the cubic group. We are able to verify earlier findings for the $$\alpha $$ α clustering in the Hoyle state and the second $$2^+$$ 2 + state of $$^{12}$$ 12 C. The success of these calculations to describe the full low-lying energy spectrum using spin-independent interactions suggest that either the spin-orbit interactions are somewhat weak in the $$^{12}$$ 12 C system, or the effects of $$\alpha $$ α clustering are diminishing their influence. This is in agreement with previous findings from ab initio shell model calculations.


2015 ◽  
Vol 24 (01) ◽  
pp. 1550003 ◽  
Author(s):  
A. H. Al-Ghamdi ◽  
Awad A. Ibraheem ◽  
M. El-Azab Farid

The alpha (α) elastic scattering from different targets potential over the energy range 10–240 MeV has been analyzed in the framework of the single-folding (SF) optical model. Four targets are considered, namely, 24 Mg , 28 Si , 32 S and 40 Ca . The SF calculations for the real central part of the nuclear optical potential are performed by folding an effective α–α interaction with the α-cluster distribution density in the target nucleus. The imaginary part of the optical potential is expressed in the phenomenological Woods–Saxon (WS) form. The calculated angular distributions of the elastic scattering differential cross-section using the derived semimicroscopic potentials successfully reproduce 36 sets of data all over the measured angular ranges. The obtained results confirm the validity of the α-cluster structure of the considered nuclei. For the sake of comparison, the same sets of data are reanalyzed using microscopic double-folded optical potentials based upon the density-dependent Jeukenne–Lejeune–Mahaux (JLM) effective nucleon–nucleon interaction.


1950 ◽  
Vol 5 (2) ◽  
pp. 318-318
Author(s):  
F. Fujimoto ◽  
S. Hayakawa ◽  
Y. Yamaguchi

1965 ◽  
Vol 138 (1B) ◽  
pp. B145-B162 ◽  
Author(s):  
A. Scotti ◽  
D. Y. Wong

1973 ◽  
Vol 44 (1) ◽  
pp. 1-4 ◽  
Author(s):  
R. Vinh Mau ◽  
J.M. Richard ◽  
B. Loiseau ◽  
M. Lacombe ◽  
W.N. Cottingham

Sign in / Sign up

Export Citation Format

Share Document