bulk properties
Recently Published Documents


TOTAL DOCUMENTS

1075
(FIVE YEARS 140)

H-INDEX

64
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Zhaoxi Sun ◽  
Mao Wang ◽  
Qiaole He ◽  
Zhirong Liu

Molecular simulations are becoming a common tool for the investigation of dynamic and thermodynamic properties of novel solvents such as ionic liquids and the more recent deep eutectic solvents. As the electrostatics derived from ab initio calculations often fail to reproduce the experimental behaviors of these functionalized solvents, a common treatment is scaling the atomic charges to improve the accord between experimental and computational results for some selected properties, e.g., the density of the liquids. Although there are many computational benchmarks on structural properties of bulk ionic liquids, the choice of the best scaling parameter remains an open question. As these liquids are designed to solvate solutes, whether the solvation thermodynamics could be correctly described is of utmost importance in practical situations. Therefore, in the current work, we provide a thermodynamic perspective of this charge scaling issue directly from solute-solvent interactions. We present a comprehensive large-scale calculation of solvation free energies via nonequilibrium fast-switching simulations for a spectrum of molecules in ionic liquids, the atomic charges of which derived from ab initio calculations are scaled to find the best scaling factor that maximizes the prediction-experiment correlation. The density-derived choice of the scaling parameter as the estimate from bulk properties is compared with the solvation-free-energy-derived one. We observed that when the scaling factor is decreased from 1.0 to 0.5, the mass density exhibits a monotonically decreasing behavior, which is caused by weaker inter-molecular interactions produced by the scaled atomic charges. However, the solvation free energies of external agents do not show consistent monotonic behaviors like the bulk property, the underlying physics of which are elucidated to be the competing electrostatic and vdW responses to the scaling-parameter variation. More intriguingly, although the recommended value for charge scaling from bulk properties falls in the neighborhood of 0.6~0.7, solvation free energies calculated at this value are not in good agreement with the experimental reference. By modestly increasing the scaling parameter (e.g., by 0.1) to avoid over-scaling of atomic charges, the solute-solvent interaction free energy approaches the reference value and the quality of calculated solvation thermodynamics approaches the hydration case. According to this phenomenon, we propose a feasible way to obtain the best scaling parameter that produces balanced solute-solvent and solvent-solvent interactions, i.e., first scanning the density-scaling-factor profile and then adding ~0.1 to that solution. We further calculate the partition coefficient or transfer free energy of solutes from water to ionic liquids to provide another thermodynamic perspective of the charge scaling benchmark. Another central result of the current work is about the widely used force fields to describe bonded and vdW terms for ionic liquids derivatives. These pre-fitted transferable parameters are evaluated and refitted in a system-specific manner to provide a detailed assessment of the reliability and accuracy of these commonly used parameters. Component-specific refitting procedures unveil that the bond-stretching term is the most problematic part of the GAFF derivatives and the angle-bending term in some cases is also not accurate enough. Astonishingly, the torsional potential defined in these pre-fitted force fields performs extremely well.


2021 ◽  
Author(s):  
◽  
James Glenn Storey

<p>The generic doping dependence of the thermodynamic, electrodynamic and transport properties of high-temperature superconductors remains a puzzle despite many years of study. We are still awaiting a rigorous scientific theory that explains the resistance-free flow of electric current in these novel materials. In conventional superconductors, observations of the predicted dependence of the superconducting transition temperature on isotopic mass played a key role in identifying a phononic pairing mechanism. In order to elucidate the role of phonons in the high-Tc superconductors, the oxygen isotope effect in the separate components of the penetration depth tensor of the high-temperature superconductor YBa2Cu4O8 was determined from AC susceptibility measurements, performed on biaxially-aligned powders set in epoxy. The results, extracted after assuming values for the upper cut-off radii in the particle size distributions, show that the isotope effect in the bc-plane is negligible compared to those of the ab- and ac-planes. This suggests that the electrons prefer to couple to phonon modes in which the motion of the atoms is perpendicular to the plane of transport. The electronic entropy, superfluid density, Raman response, spin susceptibility and thermoelectric power were calculated from energy-momentum dispersions determined by angle-resolved photoemission spectroscopy (ARPES). An excellent match with experimental data was obtained. This is a highly significant result because it provides the first comprehensive link between these bulk properties and the ARPES measurements which are dominated by the outermost CuO2 layer. Thus, in most respects surface effects do not appear to seriously modify or obscure the band structure which governs bulk properties. The calculations reveal the presence of a van Hove singularity (vHs) at the Fermi level (EF ) in the heavily overdoped regime to be a universal feature of the cuprates. The evolution of these properties with temperature and doping can be fully explained by the retreat of EF from the vHs and the opening of a normal state pseudogap as doping is decreased. Consequently, the pairing potential amplitude is found to be a strongly decreasing function of hole concentration, similar to the doping dependence of the exchange interaction, J. The pairing interaction is possibly a universal function of the EF â EvHs with the maximum in the transition temperature (Tc) governed by the exact magnitude of the density of states on the flanks of the vHs. These are key new discoveries which may provide a route forward to solving the puzzle of high-temperature superconductivity.</p>


2021 ◽  
Author(s):  
◽  
James Glenn Storey

<p>The generic doping dependence of the thermodynamic, electrodynamic and transport properties of high-temperature superconductors remains a puzzle despite many years of study. We are still awaiting a rigorous scientific theory that explains the resistance-free flow of electric current in these novel materials. In conventional superconductors, observations of the predicted dependence of the superconducting transition temperature on isotopic mass played a key role in identifying a phononic pairing mechanism. In order to elucidate the role of phonons in the high-Tc superconductors, the oxygen isotope effect in the separate components of the penetration depth tensor of the high-temperature superconductor YBa2Cu4O8 was determined from AC susceptibility measurements, performed on biaxially-aligned powders set in epoxy. The results, extracted after assuming values for the upper cut-off radii in the particle size distributions, show that the isotope effect in the bc-plane is negligible compared to those of the ab- and ac-planes. This suggests that the electrons prefer to couple to phonon modes in which the motion of the atoms is perpendicular to the plane of transport. The electronic entropy, superfluid density, Raman response, spin susceptibility and thermoelectric power were calculated from energy-momentum dispersions determined by angle-resolved photoemission spectroscopy (ARPES). An excellent match with experimental data was obtained. This is a highly significant result because it provides the first comprehensive link between these bulk properties and the ARPES measurements which are dominated by the outermost CuO2 layer. Thus, in most respects surface effects do not appear to seriously modify or obscure the band structure which governs bulk properties. The calculations reveal the presence of a van Hove singularity (vHs) at the Fermi level (EF ) in the heavily overdoped regime to be a universal feature of the cuprates. The evolution of these properties with temperature and doping can be fully explained by the retreat of EF from the vHs and the opening of a normal state pseudogap as doping is decreased. Consequently, the pairing potential amplitude is found to be a strongly decreasing function of hole concentration, similar to the doping dependence of the exchange interaction, J. The pairing interaction is possibly a universal function of the EF â EvHs with the maximum in the transition temperature (Tc) governed by the exact magnitude of the density of states on the flanks of the vHs. These are key new discoveries which may provide a route forward to solving the puzzle of high-temperature superconductivity.</p>


2021 ◽  
Vol MA2021-02 (36) ◽  
pp. 1032-1032
Author(s):  
Samantha Medina ◽  
Michael Dzara ◽  
Min Wang ◽  
Scott A Mauger ◽  
Michael Ulsh ◽  
...  

Author(s):  
Donghyeok Park ◽  
Chun Gu Lee ◽  
Doee Yang ◽  
Daehyun Kim ◽  
Joon Yong Kim ◽  
...  

Abstract Purpose The discrete element method (DEM) can be used in agricultural fields such as crop sowing, harvesting, and crop transportation. Nevertheless, modeling complex crops as appropriately shaped particles remains challenging. The modeling of particles and the calibration of input parameters are important for simulating the realistic behaviors of particles using the DEM. Methods In this study, particle models representing the morphological characteristics and size deviations of garlic cloves were proposed. Additionally, the coefficients of friction were analyzed as the contact parameters of the particles based on the heap formation experiments and simultations of the swing-arm method using 150 garlic cloves. Results The simulation results were analyzed that the residual number of particles, a bulk property that can be measured simply in the experiment, is related to the coefficients of friction. In the heap formation experiments with low particle counts, the bulk properties were more clearly differentiated by the residual number of particles than the angle of repose. Moreover, the bulk properties similar to the actual garlic could not be expressed as a spherical particle model. Thus, an equation for predicting the residual number of particles was derived for the non-spherical garlic clove particle model. Five sets of coefficients of friction were presented using the prediction equation, and all the simulation results were close to the actual residual number of particles and angle of repose of the garlic. Conclusions Although the sizes of garlic cloves have a wide distribution, appropriate inter-particle contact parameters could be predicted. Therefore, the calibration process of the DEM can be shortened using the proposed prediction equation for the residual number of particles with non-spherical particles.


2021 ◽  
Vol 5 (10) ◽  
pp. 266
Author(s):  
Yoshimichi Ohki ◽  
Naoshi Hirai ◽  
Takahiro Umemoto ◽  
Hirotaka Muto

We prepared six kinds of epoxy resin nanocomposites with silica and an epoxy resin with no silica. The nanocomposites contain silica with different diameters (10, 50, and 100 nm) while their silica contents are 1, 5, 10, and 20 vol%. At 25 and 100 °C, the thermal conductivity has a nearly proportional dependence on the silica content and exhibits an almost reciprocal proportionality to the diameter of the silica. The latter result indicates that the interaction at filler-resin interfaces plays a significant role in heat transfer. However, this view contradicts an easy-to-understand thought that the filler-resin interfaces should work as a barrier for heat transfer. This in turn indicates that the interaction at filler-resin interfaces controls the bulk properties of the resin when the filler is in a nm size. Although the dielectric constant increases with the addition of the silica filler, its increment from the resin with no silica is the smallest in the resin with the 10-nm silica. Therefore, the addition of the 10-nm silica is adequate for electrical insulation purposes.


Sign in / Sign up

Export Citation Format

Share Document