Perturbation theory with Hartree-Fock states

1967 ◽  
Vol 25 (1) ◽  
pp. 6-7 ◽  
Author(s):  
H.P. Kelly
2016 ◽  
Vol 756 ◽  
pp. 283-288 ◽  
Author(s):  
Alexander Tichai ◽  
Joachim Langhammer ◽  
Sven Binder ◽  
Robert Roth

1973 ◽  
Vol 28 (2) ◽  
pp. 179-191 ◽  
Author(s):  
B. L. Burrows

2020 ◽  
Author(s):  
Daniel Smith ◽  
Lori Burns ◽  
Andrew Simmonett ◽  
Robert Parrish ◽  
Matthew Schieber ◽  
...  

<div> <div> <div> <p>Psi4 is a free and open-source ab initio electronic structure program providing Hartree–Fock, density functional theory, many-body perturbation theory, configuration interaction, density cumulant theory, symmetry-adapted perturbation theory, and coupled-cluster theory. Most of the methods are quite efficient thanks to density fitting and multi-core parallelism. The program is a hybrid of C++ and Python, and calculations may be run with very simple text files or using the Python API, facilitating post-processing and complex workflows; method developers also have access to most of Psi4’s core functionality via Python. Job specification may be passed using The Molecular Sciences Software Institute (MolSSI) QCSchema data format, facilitating interoperability. A rewrite of our top-level computation driver, and concomitant adoption of the MolSSI QCArchive Infrastructure project, make the latest version of Psi4 well suited to distributed computation of large numbers of independent tasks. The project has fostered the development of independent software components that may be reused in other quantum chemistry programs. </p> </div> </div> </div>


2002 ◽  
Vol 11 (06) ◽  
pp. 531-538 ◽  
Author(s):  
K. C. TRIPATHY ◽  
R. SAHU

The collective bands of the N = Z nucleus 68 Se are studied within our deformed configuration mixing shell model based on Hartree–Fock states. The configuration space consists of the spherical single particle orbits 1p3/2, 0f5/2, 1p1/2 and 0g9/2 with 56 Ni as the inert core. A modified Kuo interaction for this basis space has been used in our calculation. The calculated ground band, K = 2+ excited band and the K = 5- excited band agree reasonably well with the experiment. Our calculation shows that the ground band is essentially of oblate shape and the excited K = 2+ band is of prolate shape. This is in agreement with the conclusions drawn from the recent experimental analysis.


1971 ◽  
Vol 22 (5) ◽  
pp. 761-771 ◽  
Author(s):  
A.J. Sadlej ◽  
M. Jaszuński

Sign in / Sign up

Export Citation Format

Share Document