high spin
Recently Published Documents


TOTAL DOCUMENTS

5081
(FIVE YEARS 365)

H-INDEX

107
(FIVE YEARS 10)

2022 ◽  
Vol 204 ◽  
pp. 111134
Author(s):  
Yu.S. Orlov ◽  
S.V. Nikolaev ◽  
V.A. Gavrichkov ◽  
S.G. Ovchinnikov

2022 ◽  
Vol 134 (3) ◽  
Author(s):  
Dmitry Yu. Aleshin ◽  
Rosa Diego ◽  
Leoní A. Barrios ◽  
Yulia V. Nelyubina ◽  
Guillem Aromí ◽  
...  

2022 ◽  
Vol 8 (1) ◽  
pp. 8
Author(s):  
Komala Pandurangan ◽  
Anthony B. Carter ◽  
Paulo N. Martinho ◽  
Brendan Gildea ◽  
Tibebe Lemma ◽  
...  

Structural and magnetic properties of a new spin crossover complex [Mn(4,6-diOMe-sal2323)]+ in lattices with ClO4−, (1), NO3−, (2), BF4−, (3), CF3SO3−, (4), and Cl− (5) counterions are reported. Comparison with the magnetostructural properties of the C6, C12, C18 and C22 alkylated analogues of the ClO4− salt of [Mn(4,6-diOMe-sal2323)]+ demonstrates that alkylation effectively switches off the thermal spin crossover pathway and the amphiphilic complexes are all high spin. The spin crossover quenching in the amphiphiles is further probed by magnetic, structural and Raman spectroscopic studies of the PF6− salts of the C6, C12 and C18 complexes of a related complex [Mn(3-OMe-sal2323)]+ which confirm a preference for the high spin state in all cases. Structural analysis is used to rationalize the choice of the spin quintet form in the seven amphiphilic complexes and to highlight the non-accessibility of the smaller spin triplet form of the ion more generally in dilute environments. We suggest that lattice pressure is a requirement to stabilize the spin triplet form of Mn3+ as the low spin form is not known to exist in solution.


2022 ◽  
Author(s):  
Ivy Ghosh ◽  
Biswarup Chakraborty ◽  
Abhijit Bera ◽  
Satadal Paul ◽  
Tapan Kanti Paine

Four cobalt(II)-carboxylate complexes [(6-Me3-TPA)CoII(benzoate)](BPh4) (1), (6-Me3-TPA)CoII(benzilate)](ClO4) (2), [(6-Me3-TPA)CoII(mandelate)](BPh4) (3), and [(6-Me3-TPA)CoII(MPA)](BPh4) (4) (HMPA = 2-methoxy-2-phenylacetic acid) of the 6-Me3-TPA (tris((6-methylpyridin-2-yl)methyl)amine) ligand were isolated to investigate their ability in H2O2-dependent selective...


Author(s):  
Rocío Sánchez-de-Armas ◽  
Carmen J. Calzado

A common feature of spin-crossover molecules deposited on a substrate is the presence of a residual proportion of high-spin (HS) molecules at low temperature, instead of the pure low-spin (LS)...


2021 ◽  
Vol 78 (1) ◽  
pp. 63-69
Author(s):  
Robyn E. Powell ◽  
Martin R. Lees ◽  
Graham J. Tizzard ◽  
Petra J. van Koningsbruggen

The synthesis and crystal structure (100 K) of the title compound, [Fe(C10H11BrN3OS)2]NO3·H2O, is reported. The asymmetric unit consists of an octahedral [FeIII(HL)2]+ cation, where HL − is H-5-Br-thsa-Et or 5-bromosalicylaldehyde 4-ethylthiosemicarbazonate(1−) {systematic name: 4-bromo-2-[(4-ethylthiosemicarbazidoidene)methyl]phenolate}, a nitrate anion and a noncoordinated water molecule. Each HL − ligand binds via the thione S, the imine N and the phenolate O atom, resulting in an FeIIIS2N2O2 chromophore. The ligands are orientated in two perpendicular planes, with the O and S atoms in cis and the N atoms in trans positions. This [Fe(HL)2](anion)·H2O compound contains the first known cationic FeIII entity containing two salicylaldehyde thiosemicarbazone derivatives. The FeIII ion is in the high-spin state at 100 K. In addition, a comparative IR spectroscopic study of the free ligand and the ferric complex is presented, demonstrating that such an analysis provides a quick identification of the degree of deprotonation and the coordination mode of the ligand in this class of metal compounds. The variable-temperature magnetic susceptibility measurements (5–320 K) are consistent with the presence of a high-spin FeIII ion with a zero-field splitting D = 0.439 (1) cm−1.


2021 ◽  
Vol 243 (1) ◽  
Author(s):  
M. A. Castillo Corzo ◽  
L. E. Borja-Castro ◽  
L. De Los Santos Valladares ◽  
J. C. González ◽  
J. Medina Medina ◽  
...  

AbstractWe present the magnetic, structural and 57Fe Mossbauer characterization of soils collected from an ancient mercury contaminated city named Huancavelica in Peru. The characterization results indicate that silicates and carbonates are the main mineralogical constituents in the samples. In addition, 57Fe Mössbauer spectra at room temperature reveal, the presence of two components: a magnetic component related to magnetic Fe-oxides (magnetite, hematite, goethite) and a high non-magnetic component related to Fe+3 in high spin configuration and tetrahedral coordination in silicates. The magnetization measurements present screening of paramagnetic, ferromagnetic and antiferromagnetic signals, typical from soils containing different silicates and iron minerals. Remarkably the Verwey and Morin transitions corresponding to magnetite and hematite, respectively, are screened by the paramagnetic signal corresponding to the major silicate components in the samples. Overall, the soils are mainly composed of crystalline and amorphous silicates, calcites and iron bearing which are typical from Andean soils.


Author(s):  
Jesse B. Gordon ◽  
Therese Albert ◽  
Aniruddha Dey ◽  
Sinan Sabuncu ◽  
Maxime A. Siegler ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document