An optimal ordering policy for a spare unit with lead time

1978 ◽  
Vol 2 (6) ◽  
pp. 409-419 ◽  
Author(s):  
L.C. Thomas ◽  
Shunji Osaki
2011 ◽  
Vol 2011 ◽  
pp. 1-24
Author(s):  
Hua-Ming Song ◽  
Hui Yang ◽  
Jian-Qiang Luo

This paper investigates the ordering decisions and coordination mechanism for a distributed short-life-cycle supply chain. The objective is to maximize the whole supply chain's expected profit and meanwhile make the supply chain participants achieve a Pareto improvement. We treat lead time as a controllable variable, thus the demand forecast is dependent on lead time: the shorter lead time, the better forecast. Moreover, optimal decision-making models for lead time and order quantity are formulated and compared in the decentralized and centralized cases. Besides, a three-parameter contract is proposed to coordinate the supply chain and alleviate the double margin in the decentralized scenario. In addition, based on the analysis of the models, we develop an algorithmic procedure to find the optimal ordering decisions. Finally, a numerical example is also presented to illustrate the results.


2021 ◽  
Vol 42 (5) ◽  
pp. 1163-1179
Author(s):  
Prachi Swain ◽  
Chittaranjan Mallick ◽  
Trailokyanath Singh ◽  
Pandit Jagatananda Mishra ◽  
Hadibandhu Pattanayak

The method is applied to Retail Ordering Policy to manage the associated risk. DMAIC framework applies stochastic techniques. Stochastic optimisation determines the optimal retail ordering policies to maximise profit. Simulate every determined optimal ordering policy and calculate profits, risks, and Six Sigma metrics to measure against specified target limits. Analyse simulation results and identify and quantify the main contributors to the profits variability by using sensitivity analysis. The optimal retail ordering policies are ranked based on their profits and associated risk factors. The technically best optimal retail ordering policy is recommended to the management for implementation. Control stage is elaborated by reusing the data and presented stochastic optimisation and simulation models for ongoing management of the optimal strategy. Some changes are applied to the data and models however, in order to emulate the scenario of an implemented strategy.


Sign in / Sign up

Export Citation Format

Share Document