controllable lead time
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 10)

H-INDEX

17
(FIVE YEARS 0)

Author(s):  
KARTHICK B ◽  
UTHAYAKUMAR R

This article proposes a two-level fuzzy supply chain inventory model, in which a single consignor delivers multiple items to the multiple consignees with the consignment stock agreement. The lead time is incorporated into the model and is considered a variable for obtaining optimal replenishment decisions. In addition, crashing cost is employed to reduce the lead time duration. This article investigates four different cases under controllable lead time to analyze the best strategy, focusing on two delays such as delay-in-payments and delay-in-shipment. In all four cases, all associated inventory costs are treated as a trapezoidal fuzzy number, and a signed distance method is employed to defuzzify the fuzzy inventory cost. An efficient optimization technique is adopted to find the optimal solution for the supply chain. Four numerical experiments are conducted to illustrate the four cases. Any one of these experimental results will provide the best solution for the ideal performance of the business under controllable lead time in the consignment stock policy. Finally, the managerial insights, conclusion and future direction of this model are provided.


2021 ◽  
Vol 13 (4) ◽  
pp. 1756
Author(s):  
Biswajit Sarkar ◽  
Bikash Koli Dey ◽  
Mitali Sarkar ◽  
Ali AlArjani

Every industry always tries to provide the best service to its consumers. To provide better service to the consumer and optimize profit, a sustainable online-to-offline retailing strategy is proposed in this current study. Both online and offline systems are considered here, i.e., to provide the best service, the industry sells its products online and offline. Due to the consideration of online and offline systems, the selling price of the products is also different for different modes, and the demand for a particular product is the combined demand of online demand and offline demand, which depend on the selling price of the product. Moreover, the exact lead time and exact backorder are calculated to obtain the system’s exact cost or profit, which directly improves the system’s service. Different investments are incorporated to optimize the total system profit. A distribution-free approach is utilized to solve this model. Numerical examples are provided to prove the applicability of the model in reality. Sensitivity analysis is performed based on critical parameters. Special cases and graphical representations also prove the global optimality of the current study.


2020 ◽  
Vol 54 (3) ◽  
pp. 653-673
Author(s):  
Selvaraj Hemapriya ◽  
Ramasamy Uthayakumar

This paper explores a neoteric approach to geometric shipment policy and concerns the impact of controllable lead time, setup cost reduction, lost sales caused by stock-out and freight cost within an integrated vendor–buyer supply chain configuration using service-level constraint. In particular, the transportation cost is a function of shipping weight, distance and transportation modes. In other words, truckload (TL) and less-than-truckload (LTL) shipments. A heuristic model is developed to minimize the joint expected total cost (JETC), when the mode of transportation is limited to TL and LTL shipments. Numerical examples including the sensitivity analysis with some managerial insights of system parameters is implemented to endorse the outcome of the supply chain models.


Sign in / Sign up

Export Citation Format

Share Document