A systematic solution procedure for the Fokker-Planck equation of a Brownian particle in the high-friction case

1978 ◽  
Vol 91 (3-4) ◽  
pp. 321-344 ◽  
Author(s):  
U.M. Titulaer
1968 ◽  
Vol 23 (4) ◽  
pp. 597-609 ◽  
Author(s):  
Siegfried Hess

A kinetic theory for the Brownian motion of spherical rotating particles is given starting from a generalized Fokker-Planck equation. The generalized Fokker-Planck collision operator is a sum of two ordinary Fokker-Planck differential operators in velocity and angular velocity space respectively plus a third term which provides a coupling of translational and rotational motions. This term stems from a transverse force proportional to the cross product of velocity and angular velocity of a Brownian particle. Collision brackets pertaining to the generalized Fokker-Planck operator are defined and their general properties are discussed. Application of WALDMANN'S moment method to the Fokker-Planck equation yields a set of coupled linear differential equations (transport-relaxation equations) for certain local mean values. The constitutive laws for diffusion, heat conduction by Brownian particles and spin diffusion are deduced from the transport-relaxation equations. The transport-relaxations coefficients appearing in them are given in terms of the two friction coefficients for the damping of translational and rotational motions and a third coefficient which is a measure of the transverse force. By the coupling of translational and rotational motions a diffusion flow gives rise to a correlation of linear and angular velocities.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1260
Author(s):  
Elsayed I. Mahmoud ◽  
Viktor N. Orlov

This paper presents a practical numerical method, an implicit finite-difference scheme for solving a two-dimensional time-space fractional Fokker–Planck equation with space–time depending on variable coefficients and source term, which represents a model of a Brownian particle in a periodic potential. The Caputo derivative and the Riemann–Liouville derivative are considered in the temporal and spatial directions, respectively. The Riemann–Liouville derivative is approximated by the standard Grünwald approximation and the shifted Grünwald approximation. The stability and convergence of the numerical scheme are discussed. Finally, we provide a numerical example to test the theoretical analysis.


1989 ◽  
Vol 9 (1) ◽  
pp. 109-120
Author(s):  
G. Liao ◽  
A.F. Lawrence ◽  
A.T. Abawi

2020 ◽  
Vol 23 (2) ◽  
pp. 450-483 ◽  
Author(s):  
Giacomo Ascione ◽  
Yuliya Mishura ◽  
Enrica Pirozzi

AbstractWe define a time-changed fractional Ornstein-Uhlenbeck process by composing a fractional Ornstein-Uhlenbeck process with the inverse of a subordinator. Properties of the moments of such process are investigated and the existence of the density is shown. We also provide a generalized Fokker-Planck equation for the density of the process.


Sign in / Sign up

Export Citation Format

Share Document