Iterative methods for large linear systems

1990 ◽  
Vol 32 (4) ◽  
pp. 428
Acta Numerica ◽  
1992 ◽  
Vol 1 ◽  
pp. 57-100 ◽  
Author(s):  
Roland W. Freund ◽  
Gene H. Golub ◽  
Noël M. Nachtigal

Recent advances in the field of iterative methods for solving large linear systems are reviewed. The main focus is on developments in the area of conjugate gradient-type algorithms and Krylov subspace methods for nonHermitian matrices.


1991 ◽  
Vol 56 (193) ◽  
pp. 406
Author(s):  
W. G. ◽  
David R. Kincaid ◽  
Linda J. Hayes

2018 ◽  
Vol 16 (1) ◽  
pp. 986-998
Author(s):  
Chun Wen ◽  
Ting-Zhu Huang ◽  
Xian-Ming Gu ◽  
Zhao-Li Shen ◽  
Hong-Fan Zhang ◽  
...  

AbstractStochastic Automata Networks (SANs) have a large amount of applications in modelling queueing systems and communication systems. To find the steady state probability distribution of the SANs, it often needs to solve linear systems which involve their generator matrices. However, some classical iterative methods such as the Jacobi and the Gauss-Seidel are inefficient due to the huge size of the generator matrices. In this paper, the multipreconditioned GMRES (MPGMRES) is considered by using two or more preconditioners simultaneously. Meanwhile, a selective version of the MPGMRES is presented to overcome the rapid increase of the storage requirements and make it practical. Numerical results on two models of SANs are reported to illustrate the effectiveness of these proposed methods.


Sign in / Sign up

Export Citation Format

Share Document