Derived guinea pig compound VIIIth nerve action potentials to continuous pure tones

1991 ◽  
Vol 52 (2) ◽  
pp. 271-280 ◽  
Author(s):  
C.I Berlin ◽  
L.J Hood ◽  
E.K Barlow ◽  
C.R Morehouse ◽  
E.G Smith
1973 ◽  
Vol 83 (2) ◽  
pp. 264-275 ◽  
Author(s):  
David E. Crowley ◽  
Victor L. Schramm ◽  
Ronie E. Swain ◽  
Sylvia N. Swanson

1968 ◽  
Vol 6 (2) ◽  
pp. 209-212 ◽  
Author(s):  
Hampton W. Shirer ◽  
Nancy Ann Dahl

2006 ◽  
Vol 95 (3) ◽  
pp. 1926-1935 ◽  
Author(s):  
Liang-Fa Liu ◽  
Alan R. Palmer ◽  
Mark N. Wallace

In the auditory system, some ascending pathways preserve the precise timing information present in a temporal code of frequency. This can be measured by studying responses that are phase-locked to the stimulus waveform. At each stage along a pathway, there is a reduction in the upper frequency limit of the phase-locking and an increase in the steady-state latency. In the guinea pig, phase-locked responses to pure tones have been described at various levels from auditory nerve to neocortex but not in the inferior colliculus (IC). Therefore we made recordings from 161 single units in guinea pig IC. Of these single units, 68% (110/161) showed phase-locked responses. Cells that phase-locked were mainly located in the central nucleus but also occurred in the dorsal cortex and external nucleus. The upper limiting frequency of phase-locking varied greatly between units (80−1,034 Hz) and between anatomical divisions. The upper limits in the three divisions were central nucleus, >1,000 Hz; dorsal cortex, 700 Hz; external nucleus, 320 Hz. The mean latencies also varied and were central nucleus, 8.2 ± 2.8 (SD) ms; dorsal cortex, 17.2 ms; external nucleus, 13.3 ms. We conclude that many cells in the central nucleus receive direct inputs from the brain stem, whereas cells in the external and dorsal divisions receive input from other structures that may include the forebrain.


1965 ◽  
Vol 48 (5) ◽  
pp. 797-823 ◽  
Author(s):  
L. Barr ◽  
M. M. Dewey ◽  
W. Berger

The hypothesis that the nexus is a specialized structure allowing current flow between cell interiors is corroborated by concomitant structural changes of the nexus and changes of electrical coupling between cells due to soaking in solutions of abnormal tonicity. Fusiform frog atrial fibers are interconnected by nexuses. The nexuses, desmosomes, and regions of myofibrillar attachment of this muscle are not associated in a manner similar to intercalated discs of guinea pig cardiac muscle. Indeed, nexuses occur wherever cell membranes are closely apposed. Action potentials of frog atrial bundles detected extracellularly across a sucrose gap change from monophasic to diphasic when the gap is shunted by a resistor. This indicates that action potentials are transmitted across the gap when sufficient excitatory current is allowed to flow across the gap. When the sucrose solution in the gap is made hypertonic, propagation past the gap is blocked and the resistance between the cells in the gap increases. Electron micrographs demonstrate that the nexuses of frog atrium and guinea pig ventricle are ruptured by hypertonic solutions.


Sign in / Sign up

Export Citation Format

Share Document