Decreased glomerular basement membrane heparan sulfate proteoglycan in renal hypertension

1996 ◽  
Vol 9 (4) ◽  
pp. 15A
Author(s):  
H SIEBERTH
1998 ◽  
Vol 46 (1) ◽  
pp. 19-27 ◽  
Author(s):  
Alexander J. Groffen ◽  
Markus A. Ruegg ◽  
Henri Dijkman ◽  
Thea J. van de Velden ◽  
Carin A. Buskens ◽  
...  

Agrin is a heparan sulfate proteoglycan (HSPG) that is highly concentrated in the synaptic basal lamina at the neuromuscular junction (NMJ). Agrin-like immunoreactiv-ity is also detected outside the NMJ. Here we show that agrin is a major HSPG component of the human glomerular basement membrane (GBM). This is in addition to perlecan, a previously characterized HSPG of basement membranes. Antibodies against agrin and against an unidentified GBM HSPG produced a strong staining of the GBM and the NMJ, different from that observed with anti-perlecan antibodies. In addition, anti-agrin antisera recognized purified GBM HSPG and competed with an anti-GBM HSPG monoclonal antibody in ELISA. Furthermore, both antibodies recognized a molecule that migrated in SDS-PAGE as a smear and had a molecular mass of approximately 200–210 kD after deglycosylation. In immunoelectron microscopy, agrin showed a linear distribution along the GBM and was present throughout the width of the GBM. This was again different from perlecan, which was exclusively present on the endothelial side of the GBM and was distributed in a nonlinear manner. Quantitative ELISA showed that, compared with perlecan, the agrin-like GBM HSPG showed a sixfold higher molarity in crude glomerular extract. These results show that agrin is a major component of the GBM, indicating that it may play a role in renal ultrafiltration and cell matrix interaction.


Hypertension ◽  
1995 ◽  
Vol 25 (3) ◽  
pp. 399-407 ◽  
Author(s):  
Bernhard Heintz ◽  
Georg Stöcker ◽  
Christian Mrowka ◽  
Uwe Rentz ◽  
Heinrich Melzer ◽  
...  

1996 ◽  
Vol 7 (12) ◽  
pp. 2670-2676
Author(s):  
I Stefanidis ◽  
B Heintz ◽  
G Stöcker ◽  
C Mrowka ◽  
H G Sieberth ◽  
...  

The aim of the study presented here was to investigate whether, in patients showing immediate graft function after renal transplantation, cold-ischemia and reperfusion lead to damage of the glomerular basement membrane and consequently to a loss of heparan sulfate proteoglycans. Loss of these heparan sulfate proteoglycans is a major cause of proteinuria. Time-dependent changes in urinary excretion rates of heparan sulfate proteoglycans but also of total protein, albumin, low- and high-molecular-weight proteins were analyzed quantitatively and by polyacrylamid-gel-electrophoresis in eight patients. Immediately after renal transplantation, severe proteinuria with an excretion rate of up to 251 +/- 108 mg/min was apparent and rapidly declined within 24 h to 4.11 +/- 2.80 mg/min. The gel-electrophoretic pattern showed a nonselective glomerular and tubular proteinuria. The excretion rate of heparan sulfate proteoglycan was increased in this initial reperfusion phase (up to 7 h), most probably because of ischemia- and reperfusion-induced damage of the glomerular basement membrane. The initial nonselective glomerular proteinuria disappeared within 48 h, changing to a mild selective glomerular proteinuria. In this second phase (7 to 48 h), lower levels of heparan sulfate proteoglycan excretion were observed (0.54 +/- 0.54 microgram/min versus 1.66 +/- 1.93 micrograms/min, P < 0.05). However, during the repair process of the glomerular basement membrane, heparan sulfate proteoglycan is synthesized de novo, leading to an increasing heparan sulfate proteoglycan content of the glomerular basement membrane. This second phase is paralleled by the change from a nonselective to a selective glomerular proteinuria. In the third phase, when the heparan sulfate proteoglycan content of the glomerular basement membrane normalizes, glomerular proteinuria was abolished in most of the patients.


Diabetes ◽  
1982 ◽  
Vol 31 (2) ◽  
pp. 185-188 ◽  
Author(s):  
D. H. Rohrbach ◽  
J. R. Hassell ◽  
H. K. Kleinman ◽  
G. R. Martin

Sign in / Sign up

Export Citation Format

Share Document