cell matrix
Recently Published Documents


TOTAL DOCUMENTS

1461
(FIVE YEARS 248)

H-INDEX

106
(FIVE YEARS 8)

Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 174
Author(s):  
Cherry Yin-Yi Chang ◽  
An-Jen Chiang ◽  
Ming-Tsung Lai ◽  
Man-Ju Yan ◽  
Chung-Chen Tseng ◽  
...  

Infection-induced chronic inflammation is common in patients with endometriosis. Although microbial communities in the reproductive tracts of patients have been reported, little was known about their dynamic profiles during disease progression and complication development. Microbial communities in cervical mucus were collected by cervical swabs from 10 healthy women and 23 patients, and analyzed by 16S rRNA amplicon sequencing. The abundance, ecological relationships and functional networks of microbiota were characterized according to their prevalence, clinical stages, and clinical features including deeply infiltrating endometriosis (DIE), CA125, pain score and infertility. Cervical microbiome can be altered during endometriosis development and progression with a tendency of increased Firmicutes and decreased Actinobacteria and Bacteroidetes. Distinct from vaginal microbiome, upregulation of Lactobacillus, in combination with increased Streptococcus and decreased Dialister, was frequently associated with advanced endometriosis stages, DIE, higher CA125 levels, severe pain, and infertility. Significantly, reduced richness and diversity of cervical microbiome were detected in patients with more severe clinical symptoms. Clinical treatments against infertility can partially reverse the ecological balance of microbes through remodeling nutrition metabolism and transport and cell-cell/cell-matrix interaction. This study provides a new understanding on endometriosis development and a more diverse cervical microbiome may be beneficial for patients to have better clinical outcomes.


2022 ◽  
Vol 9 (1) ◽  
pp. 28
Author(s):  
Giorgia Imparato ◽  
Francesco Urciuolo ◽  
Paolo Antonio Netti

Organ on chip (OOC) has emerged as a major technological breakthrough and distinct model system revolutionizing biomedical research and drug discovery by recapitulating the crucial structural and functional complexity of human organs in vitro. OOC are rapidly emerging as powerful tools for oncology research. Indeed, Cancer on chip (COC) can ideally reproduce certain key aspects of the tumor microenvironment (TME), such as biochemical gradients and niche factors, dynamic cell–cell and cell–matrix interactions, and complex tissue structures composed of tumor and stromal cells. Here, we review the state of the art in COC models with a focus on the microphysiological systems that host multicellular 3D tissue engineering models and can help elucidate the complex biology of TME and cancer growth and progression. Finally, some examples of microengineered tumor models integrated with multi-organ microdevices to study disease progression in different tissues will be presented.


2022 ◽  
Vol 23 (1) ◽  
pp. 539
Author(s):  
Beatrice Piola ◽  
Maurizio Sabbatini ◽  
Sarah Gino ◽  
Marco Invernizzi ◽  
Filippo Renò

In recent years, bioprinting has attracted much attention as a potential tool for generating complex 3D biological constructs capable of mimicking the native tissue microenvironment and promoting physiologically relevant cell–cell and cell–matrix interactions. The aim of the present study was to develop a crosslinked 3D printable hydrogel based on biocompatible natural polymers, gelatin and xanthan gum at different percentages to be used both as a scaffold for cell growth and as a wound dressing. The CellInk Inkredible 3D printer was used for the 3D printing of hydrogels, and a glutaraldehyde solution was tested for the crosslinking process. We were able to obtain two kinds of printable hydrogels with different porosity, swelling and degradation time. Subsequently, the printed hydrogels were characterized from the point of view of biocompatibility. Our results showed that gelatin/xanthan-gum bioprinted hydrogels were biocompatible materials, as they allowed both human keratinocyte and fibroblast in vitro growth for 14 days. These two bioprintable hydrogels could be also used as a helpful dressing material.


2022 ◽  
Vol 67 (4) ◽  
pp. 1-9
Author(s):  
Shulong Zhang ◽  
Kaihua Zhu ◽  
Qi Han ◽  
Quan Wang ◽  
Bin Yang

LncRNA prostate cancer-associated transcript 1 (PCAT1) is a well-known oncogene, but the mechanisms of exosomes PCAT1 in colorectal cancer (CRC) remain largely unknown. Thus, the mechanisms of exosomes lncRNA PCAT1 were investigated. The expressions of exosomes lncRNA PCAT1 in tissues from stage 0-I and stage II-III CRC patients, and intestinal epithelial cell line FHC and two CRC cell lines, HT29 and HCT8 were measured by real-time quantitative PCR. The effects of lncRNA PCAT1 on adhesion and invasion of two CRC cell lines were investigated by cell-matrix adhesion and transwell assays. In addition, the target of PCAT1 (ZNF217) was validated using an RNA immune precipitation assay. Finally, the protein levels of MTA2, MTA3, SNAI1, and E-cadherin in normal participants, stage 0-I and stage II-III CRC patients, as well as two cell lines with stable ZNF217 knockdown were investigated by western blotting. The plasma exosomal lncRNA PCAT1 was found to be significantly increased in the CRC tissues and cell lines. In addition, lncRNA PCAT1 knockdown significantly inhibited the adhesion and invasion of HT29 and HCT8 cells. RIP assay results showed lncRNA PCAT1 could target ZNF217, and downregulation of lncRNA PCAT1 could decrease the protein expressions of ZNF217 in two CRC cells lines. Moreover, ZNF217 knockdown significantly decreased MTA2, MTA3, and SNAI1 expressions, but increased E-cadherin expressions in both CRC cells lines. Exosomal lncRNA PCAT1 can promote the adhesion and invasion of CRC cells, and PCAT1 overexpression may lead to ZNF217 upregulation that regulates EMT-related MTA2/MTA3/Snai1/E-cadherin signaling


Author(s):  
Andrea Mazzocchi ◽  
Kyung Min Yoo ◽  
Kylie Nairon ◽  
L. Madison Kirk ◽  
Elaheh Rahbar ◽  
...  

Abstract Current in vitro 3D models of liver tissue have been limited by the inability to study the effects of specific extracellular matrix (ECM) components on cell phenotypes. This is in part due to limitations in the availability of chemical modifications appropriate for this purpose. For example, hyaluronic acid (HA), which is a natural ECM component within the liver, lacks key ECM motifs (e.g., RGD peptides) that support cell adhesion. However, the addition of maleimide (Mal) groups to HA could facilitate the conjugation of ECM biomimetic peptides with thiol-containing end groups. In this study, we characterized a new crosslinkable hydrogel (i.e., HA-Mal) that yielded a simplified ECM-mimicking microenvironment supportive of 3D liver cell culture. We then performed a series of experiments to assess the impact of physical and biochemical signaling in the form of RGD peptide incorporation and TGF- ß supplementation, respectively, on hepatic functionality. Hepatic stellate cells (i.e., LX-2) exhibited increased cell-matrix interactions in the form of cell spreading and elongation within HA-Mal matrices containing RGD peptides, enabling physical adhesions, whereas hepatocyte-like cells (HepG2) had reduced albumin and urea production. We further exposed the encapsulated cells to soluble TGF-ß to elicit a fibrosis-like state. In the presence of TGF-ß biochemical signals, LX-2 cells became activated and HepG2 functionality significantly decreased in both RGD-containing and RGD-free hydrogels. Altogether, in this study we have developed a hydrogel biomaterial platform that allows for discrete manipulation of specific ECM motifs within the hydrogel to better understand the roles of cell-matrix interactions on cell phenotype and overall liver functionality.


2021 ◽  
Author(s):  
Iain Muntz ◽  
Michele Fenu ◽  
Gerjo J V M van Osch ◽  
Gijsje Koenderink

Abstract Living tissue is able to withstand large stresses in everyday life, yet it also actively adapts to dynamic loads. This remarkable mechanical behaviour emerges from the interplay between living cells and their non-living extracellular environment. Here we review recent insights into the biophysical mechanisms involved in the reciprocal interplay between cells and the extracellular matrix and how this interplay determines tissue mechanics, with a focus on connective tissues. We first describe the roles of the main macromolecular components of the extracellular matrix in regards to tissue mechanics. We then proceed to highlight the main routes via which cells sense and respond to their biochemical and mechanical extracellular environment. Next we introduce the three main routes via which cells can modify their extracellular environment: exertion of contractile forces, secretion and deposition of matrix components, and matrix degradation. Finally we discuss how recent insights in the mechanobiology of cell-matrix interactions are furthering our understanding of the pathophysiology of connective tissue diseases and cancer, and facilitating the design of novel strategies for tissue engineering.


Author(s):  
Jinglei Wu ◽  
Jiazhu Xu ◽  
Yi-hui Huang ◽  
Liping Tang ◽  
Yi Hong

Abstract Decellularized meniscal extracellular matrix (ECM) material holds great potential for meniscus repair and regeneration. Particularly, injectable ECM hydrogel is highly desirable for the minimally invasive treatment of irregularly shaped defects. Although regional-specific variations of the meniscus are well documented, no ECM hydrogel has been reported to simulate zonally specific microenvironments of the native meniscus. To fill the gap, different (outer, middle, and inner) zones of porcine menisci were separately decellularized. Then the regionally decellularized meniscal ECMs were solubilized by pepsin digestion, neutralized, and then form injectable hydrogels. The hydrogels were characterized in gelation behaviors and mechanical properties and seeded with bovine fibrochondrocytes to evaluate the regionally biochemical effects on the cell-matrix interactions. Our results showed that the decellularized inner meniscal ECM (IM) contained the greatest glycosaminoglycan (GAG) content and the least collagen content compared with the decellularized outer meniscal ECM (OM) and middle meniscal ECM (MM). The IM hydrogel showed lower compressive strength than the OM hydrogel. When encapsulated with fibrochondrocytes, the IM hydrogel accumulated more GAG, contracted to a greater extent and reached higher compressive strength than that of the OM hydrogel at 28 days. Our findings demonstrate that the regionally specific meniscal ECMs present biochemical variation and show various effects on the cell behaviors, thus providing information on how meniscal ECM hydrogels may be utilized to reconstruct the microenvironments of the native meniscus.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ariana A. Vasconcelos ◽  
Jorge C. Estrada ◽  
Victor David ◽  
Luciana S. Wermelinger ◽  
Fabio C. L. Almeida ◽  
...  

Disintegrins are small cysteine-rich proteins found in a variety of snake venom. These proteins selectively modulate integrin function, heterodimeric receptors involved in cell-cell and cell-matrix interaction that are widely studied as therapeutic targets. Snake venom disintegrins emerged from the snake venom metalloproteinase and are classified according to the sequence size and number of disulfide bonds. Evolutive structure and function diversification of disintegrin family involves a stepwise decrease in the polypeptide chain, loss of cysteine residues, and selectivity. Since the structure elucidation of echistatin, the description of the structural properties of disintegrins has allowed the investigation of the mechanisms involved in integrin-cell-extracellular matrix interaction. This review provides an analysis of the structures of all family groups enabling the description of an expanded classification of the disintegrin family in seven groups. Each group presents a particular disulfide pattern and sequence signatures, facilitating the identification of new disintegrins. The classification was based on the disintegrin-like domain of the human metalloproteinase (ADAM-10). We also present the sequence and structural signatures important for disintegrin-integrin interaction, unveiling the relationship between the structure and function of these proteins.


Author(s):  
Sumanta Samanta ◽  
Laura Ylä-Outinen ◽  
Vignesh Kumar Rangasami ◽  
Susanna Narkilahti ◽  
Oommen P. Oommen

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Yelena Y Bernadskaya ◽  
Haicen Yue ◽  
Calina Copos ◽  
Lionel Christiaen ◽  
Alex Mogilner

Physiological and pathological morphogenetic events involve a wide array of collective movements, suggesting that multicellular arrangements confer biochemical and biomechanical properties contributing to tissue scale organization. The Ciona cardiopharyngeal progenitors provide the simplest model of collective cell migration, with cohesive bilateral cell pairs polarized along the leader-trailer migration path while moving between the ventral epidermis and trunk endoderm. We use the Cellular Potts Model to computationally probe the distributions of forces consistent with shapes and collective polarity of migrating cell pairs. Combining computational modeling, confocal microscopy, and molecular perturbations, we identify cardiopharyngeal progenitors as the simplest cell collective maintaining supracellular polarity with differential distributions of protrusive forces, cell-matrix adhesion, and myosin-based retraction forces along the leader-trailer axis. 4D simulations and experimental observations suggest that cell-cell communication helps establish a hierarchy to align collective polarity with the direction of migration, as observed with three or more cells in silico and in vivo. Our approach reveals emerging properties of the migrating collective: cell pairs are more persistent, migrating longer distances, and presumably with higher accuracy. Simulations suggest that cell pairs can overcome mechanical resistance of the trunk endoderm more effectively when they are polarized collectively. We propose that polarized supracellular organization of cardiopharyngeal progenitors confers emergent physical properties that determine mechanical interactions with their environment during morphogenesis.


Sign in / Sign up

Export Citation Format

Share Document