basement membranes
Recently Published Documents


TOTAL DOCUMENTS

1390
(FIVE YEARS 162)

H-INDEX

113
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Raman Devarajan ◽  
Hellevi Peltoketo ◽  
Valerio Izzi ◽  
Heli Johanna Ruotsalainen ◽  
Saila Kauppila ◽  
...  

The tumor extracellular matrix (ECM) is a critical regulator of cancer progression and metastasis, significantly affecting the treatment response. Expression of collagen XVIII (ColXVIII), a ubiquitous component of basement membranes, is induced in many solid tumors, but its involvement in tumorigenesis has remained elusive. We show here that ColXVIII is markedly upregulated in human breast cancer (BC) cells and is closely associated with a poor prognosis in high-grade BC, especially in human epidermal growth factor receptor 2 (HER2)-positive and basal/triple-negative cases. We identified a novel mechanism of action for ColXVIII as a modulator of epidermal growth factor receptor (EGFR/ErbB) signaling and show that it forms a complex with EGFR, HER2 and alpha6 integrin to promote cancer cell proliferation in a pathway involving its N-terminal portion and the MAPK/ERK1/2 and PI3K/Akt cascades. In vivo studies with Col18a1 mouse models crossed with the MMTV-PyMT mammary carcinogenesis model showed that the short ColXVIII isoform promotes BC growth and metastasis in a tumor cell-autonomous manner. Moreover, the number of mammary cancer stem cells was significantly reduced in both mouse and human cell models upon ColXVIII inhibition. Finally, ablation of ColXVIII in human BC cells and the MMTV-PyMT model substantially improved the efficacy of certain EGFR/ERbB-targeting therapies, even abolishing resistance to EGFR/ErbB inhibitors in some cell lines. In summary, a new function is revealed for ColXVIII in sustaining the stemness properties of BC cells, and tumor progression and metastasis through EGFR/ErbB signaling, suggesting that targeting ColXVIII in the tumor milieu may have significant therapeutic potential.


2022 ◽  
Vol 23 (2) ◽  
pp. 727
Author(s):  
Osamu Hotta ◽  
Norio Ieiri ◽  
Masaaki Nagai ◽  
Ayaki Tanaka ◽  
Yasuaki Harabuchi

Hematuria is an essential symptom of immunoglobulin A nephropathy (IgAN). Although the etiology of hematuria in IgAN has not been fully elucidated, it is thought that the rupture of the glomerular basement membranes caused by intra-capillary leukocyte influx, so-called glomerular vasculitis, is the pathological condition responsible for severe hematuria. Glomerular vasculitis are active lesions that exist in the glomeruli of acute phase IgAN and it is important because it is suspected to make the transition to segmental glomerular sclerosis (SGS) as a repair scar lesion in the chronic phase, and the progression of SGS would eventually lead to glomerular obsolescence. Worsening of hematuria concomitant with acute pharyngitis is common in patients with IgAN; therefore, elucidating the relationship between the immune system of Waldeyer’s ring, including the palatine tonsil and epipharyngeal lymphoid tissue, and the glomerular vasculitis may lead to understanding the nature of IgAN. The epipharynx is an immunologically activated site even under normal conditions, and enhanced activation of innate immunity is likely to occur in response to airborne infection. Hyperactivation of innate immunity via upregulation of Toll-like receptors in the interfollicular area of the palatine tonsil and epipharyngeal lymphoid tissue, followed by enhanced fractalkine/CX3CR1 interactions, appears to play an important role in the development of glomerular vasculitis in IgAN. As latent but significant epipharyngitis is present in most patients with IgAN, it is plausible that acute upper respiratory infection may contribute as a trigger for the innate epipharyngeal immune system, which is already upregulated in a chronically inflamed environment. Given that epipharyngitis and its effects on IgAN are not fully understood, we propose that the so-called “epipharynx–kidney axis” may provide an important focus for future research.


2022 ◽  
Vol 2022 ◽  
pp. 1-5
Author(s):  
Ulrich Jehn ◽  
Cornelie Müller-Hofstede ◽  
Barbara Heitplatz ◽  
Veerle Van Marck ◽  
Stefan Reuter ◽  
...  

Background. Alport syndrome results from a hereditary defect of collagen IV synthesis. This causes progressive glomerular disease, ocular abnormalities, and inner ear impairment. Case Presentation. Herein, we present a case of Alport syndrome in a 28-year-old woman caused by a novel mutation (Gly1436del) in the COL4A4 gene that was not unveiled until her first pregnancy. Within the 29th pregnancy week, our patient presented with massive proteinuria and nephrotic syndrome. Light microscopic examination of a kidney biopsy showed typical histological features of segmental sclerosis, and electron microscopy revealed extensive podocyte alterations as well as thickness of glomerular basement membranes with splitting of the lamina densa. One and a half years after childbirth, renal function deteriorated to a preterminal stage, whereas nephrotic syndrome subsided quickly after delivery. Conclusion. This case report highlights the awareness of atypical AS courses and emphasizes the importance of genetic testing in such cases.


2021 ◽  
Vol 23 (1) ◽  
pp. 199
Author(s):  
Zhen-Shan Yang ◽  
Hai-Yang Pan ◽  
Wen-Wen Shi ◽  
Si-Ting Chen ◽  
Ying Wang ◽  
...  

Decidualization is essential to the establishment of pregnancy in rodents and primates. Laminin A5 (encoding by Laminin α5) is a member of the laminin family, which is mainly expressed in the basement membranes. Although laminins regulate cellular phenotype maintenance, adhesion, migration, growth, and differentiation, the expression, function, and regulation of laminin A5 during early pregnancy are still unknown. Therefore, we investigated the expression and role of laminin A5 during mouse and human decidualization. Laminin A5 is highly expressed in mouse decidua and artificially induced deciduoma. Laminin A5 is significantly increased under in vitro decidualization. Laminin A5 knockdown significantly inhibits the expression of Prl8a2, a marker for mouse decidualization. Progesterone stimulates the expression of laminin A5 in ovariectomized mouse uterus and cultured mouse stromal cells. We also show that progesterone regulates laminin A5 through the PKA-CREB-C/EBPβ pathway. Laminin A5 is also highly expressed in human pregnant decidua and cultured human endometrial stromal cells during in vitro decidualization. Laminin A5 knockdown by siRNA inhibits human in vitro decidualization. Collectively, our study reveals that laminin A5 may play a pivotal role during mouse and human decidualization via the PKA-CREB-C/EBPβ pathway.


2021 ◽  
Vol 15 ◽  
Author(s):  
H. Barry Collin ◽  
Julian Ratcliffe ◽  
Shaun P. Collin

Extant lampreys (Petromyzontiformes) are one of two lineages of surviving jawless fishes or agnathans, and are therefore of critical importance to our understanding of vertebrate evolution. Anadromous lampreys undergo a protracted lifecycle, which includes metamorphosis from a larval ammocoete stage to an adult that moves between freshwater and saltwater with exposure to a range of lighting conditions. Previous studies have revealed that photoreception differs radically across the three extant families with the Pouched lamprey Geotria australis possessing a complex retina with the potential for pentachromacy. This study investigates the functional morphology of the cornea and anterior chamber of G. australis, which is specialised compared to its northern hemisphere counterparts. Using light microscopy, scanning and transmission electron microscopy and microcomputed tomography, the cornea is found to be split into a primary spectacle (dermal cornea) and a scleral cornea (continuous with the scleral eyecup), separated by a mucoid layer bounded on each side by a basement membrane. A number of other specialisations are described including mucin-secreting epithelial cells and microholes, four types of stromal sutures for the inhibition of stromal swelling, abundant anastomosing and branching of collagen lamellae, and a scleral endothelium bounded by basement membranes. The structure and function of the cornea including an annular and possibly a pectinate ligament and iris are discussed in the context of the evolution of the eye in vertebrates.


Author(s):  
Zheying Sun ◽  
Scott S. Kemp ◽  
Prisca K. Lin ◽  
Kalia N. Aguera ◽  
George E. Davis

Objective: We sought to determine how endothelial cell (EC) expression of the activating k-Ras mutation, k-RasV12, affects their ability to form lumens and tubes and interact with pericytes during capillary assembly Approach and Results: Using defined bioassays where human ECs undergo observable tubulogenesis, sprouting behavior, pericyte recruitment to EC-lined tubes, and pericyte-induced EC basement membrane deposition, we assessed the impact of EC k-RasV12 expression on these critical processes that are necessary for proper capillary network formation. This mutation, which is frequently seen in human ECs within brain arteriovenous malformations, was found to markedly accentuate EC lumen formation mechanisms, with strongly accelerated intracellular vacuole formation, vacuole fusion, and lumen expansion and with reduced sprouting behavior, leading to excessively widened tube networks compared with control ECs. These abnormal tubes demonstrate strong reductions in pericyte recruitment and pericyte-induced EC basement membranes compared with controls, with deficiencies in fibronectin, collagen type IV, and perlecan deposition. Analyses of signaling during tube formation from these k-RasV12 ECs reveals strong enhancement of Src, Pak2 (P21 [RAC1 (Rac family small GTPase 1)] activated kinase 2), b-Raf (v-raf murine sarcoma viral oncogene homolog B1), Erk (extracellular signal–related kinase), and Akt activation and increased expression of PKCε (protein kinase C epsilon), MT1-MMP (membrane-type 1 matrix metalloproteinase), acetylated tubulin and CDCP1 (CUB domain-containing protein 1; most are known EC lumen regulators). Pharmacological blockade of MT1-MMP, Src, Pak, Raf, Mek (mitogen-activated protein kinase) kinases, Cdc42 (cell division cycle 42)/Rac1, and Notch markedly interferes with lumen and tube formation from these ECs. Conclusions: Overall, this novel work demonstrates that EC expression of k-RasV12 disrupts capillary assembly due to markedly excessive lumen formation coupled with strongly reduced pericyte recruitment and basement membrane deposition, which are critical pathogenic features predisposing the vasculature to develop arteriovenous malformations.


2021 ◽  
Author(s):  
Jin-Li Zhang ◽  
Stefania Richetti ◽  
Thomas Ramezani ◽  
Daniela Welcker ◽  
Steffen Luetke ◽  
...  

Hemicentins are large proteins of the extracellular matrix that belong to the fibulin family and play pivotal roles during development and homeostasis of a variety of invertebrate and vertebrate tissues. However, bona fide interaction partners of hemicentins have not been described as yet. Here, applying surface plasmon resonance spectroscopy and co-immunoprecipitation, we identify the basement membrane protein nidogen-2 (NID2) as a binding partner of mammalian hemicentin-1 (HMCN1), in line with the formerly described essential role of mouse HMCN1 for basement membrane integrity. HMCN1 binds to the same protein domain of NID2 (G2) as formerly shown for laminins, but with an approximately ten-fold lower affinity and in a competitive manner. Immunofluorescence and immunogold labellings reveal that HMCN1/Hmcn1 is localized closely attached to basement membranes and in partial overlap with NID2/Nid2a in different tissues of mouse and zebrafish. Genetic knockout and antisense-mediated knockdown studies in zebrafish further show that loss of Nid2a leads to similar defects in fin fold morphogenesis as loss of Laminin-alpha5 (Lama5) or Hmcn1. Combined partial loss-of-function studies further indicate that nid2a genetically interacts with both hmcn1 and lama5. Together, this suggests that despite their mutually exclusive physical binding, hemicentins, nidogens and laminins tightly cooperate and support each other during formation, maintenance and function of basement membranes to confer tissue linkage.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Siavash Shariatzadeh ◽  
Sepehr Shafiee ◽  
Ali Zafari ◽  
Tahereh Tayebi ◽  
Ghasem Yazdanpanah ◽  
...  

AbstractDecellularized and de-epithelialized placenta membranes have widely been used as scaffolds and grafts in tissue engineering and regenerative medicine. Exceptional pro-angiogenic and biomechanical properties and low immunogenicity have made the amniochorionic membrane a unique substrate which provides an enriched niche for cellular growth. Herein, an optimized combination of enzymatic solutions (based on streptokinase) with mechanical scrapping is used to remove the amniotic epithelium and chorion trophoblastic layer, which resulted in exposing the basement membranes of both sides without their separation and subsequent damages to the in-between spongy layer. Biomechanical and biodegradability properties, endothelial proliferation capacity, and in vivo pro-angiogenic capabilities of the substrate were also evaluated. Histological staining, immunohistochemistry (IHC) staining for collagen IV, and scanning electron microscope demonstrated that the underlying amniotic and chorionic basement membranes remained intact while the epithelial and trophoblastic layers were entirely removed without considerable damage to basement membranes. The biomechanical evaluation showed that the scaffold is suturable. Proliferation assay, real-time polymerase chain reaction for endothelial adhesion molecules, and IHC demonstrated that both side basement membranes could support the growth of endothelial cells without altering endothelial characteristics. The dorsal skinfold chamber animal model indicated that both side basement membranes could promote angiogenesis. This bi-sided substrate with two exposed surfaces for cultivating various cells would have potential applications in the skin, cardiac, vascularized composite allografts, and microvascular tissue engineering.


2021 ◽  
Vol 10 (2) ◽  
pp. 29-38
Author(s):  
Israa Lafta ◽  
Wasan Abdulhameed ◽  
Nahla AL-Bakri

Gestational diabetes mellitus (GDM) is a serious pregnancy complication in which a woman who has never had diabetes develops chronic hyperglycemia during her pregnancy. Normal placental function is essential for optimal fetal growth. The transport of glucose from the mother to the fetus is critical for fetal nutrient demands and can be stored as glycogen in the placenta. However, the function of this glycogen deposition is unknown: It may well be a source of fuel for a placenta itself or the storage reservoir for the later use by the fetus in times of need. While the significance of the placental glycogen remains unknown, the mounting evidence indicates that the altered glycogen metabolism and/or deposition is associated with many pregnancy complications, such as gestational diabetes, that adversely affect fetal development. The aim of this study is to assess glycogen deposition using Histochemical staining of Periodic Acid Schiff (PAS) stain. The placenta tissue collected from 50 women were enrolled in this study (25 women with no complications) and (25 women with gestational diabetes). The placentas of the two groups were compared in this study based on glycogen deposition with periodic acid-Schiff stain. The results of a histochemical investigation using PAS stain revealed a significant increase in the glycogen deposition (p≤0.001) in diabetic women's placentas within the intervillous core, around fetal vessels, and the basement membranes.


2021 ◽  
pp. 100092
Author(s):  
Bart G.J. Dekkers ◽  
Shehab I. Saad ◽  
Leah J. van Spelde ◽  
Janette K. Burgess

Sign in / Sign up

Export Citation Format

Share Document