Generation of higher order fundamental solutions to the two-dimensional modified Helmholtz equation

1993 ◽  
Vol 11 (1) ◽  
pp. 87-90 ◽  
Author(s):  
Masafumi Itagaki ◽  
Carlos A. Brebbia
2015 ◽  
Vol 17 (3) ◽  
pp. 867-886 ◽  
Author(s):  
C. S. Chen ◽  
Xinrong Jiang ◽  
Wen Chen ◽  
Guangming Yao

AbstractThe method of fundamentalsolutions (MFS)is known as aneffective boundary meshless method. However, the formulation of the MFS results in a dense and extremely ill-conditioned matrix. In this paper we investigate the MFS for solving large-scale problems for the nonhomogeneous modified Helmholtz equation. The key idea is to exploit the exponential decay of the fundamental solution of the modified Helmholtz equation, and consider a sparse or diagonal matrix instead of the original dense matrix. Hence, the homogeneous solution can be obtained efficiently and accurately. A standard two-step solution process which consists of evaluating the particular solution and the homogeneous solution is applied. Polyharmonic spline radial basis functions are employed to evaluate the particular solution. Five numerical examples in irregular domains and a large number of boundary collocation points are presented to show the simplicity and effectiveness of our approach for solving large-scale problems.


Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 360 ◽  
Author(s):  
Shangqin He ◽  
Xiufang Feng

In this paper, the ill-posed problem of the two-dimensional modified Helmholtz equation is investigated in a strip domain. For obtaining a stable numerical approximation solution, a mollification regularization method with the de la Vallée Poussin kernel is proposed. An error estimate between the exact solution and approximation solution is given under suitable choices of the regularization parameter. Two numerical experiments show that our procedure is effective and stable with respect to perturbations in the data.


Geophysics ◽  
2012 ◽  
Vol 77 (2) ◽  
pp. T47-T56 ◽  
Author(s):  
Songting Luo ◽  
Jianliang Qian ◽  
Hongkai Zhao

In the geometrical-optics approximation for the Helmholtz equation with a point source, traveltimes and amplitudes have upwind singularities at the point source. Hence, both first-order and higher-order finite-difference solvers exhibit formally at most first-order convergence and relatively large errors. Such singularities can be factored out by factorizing traveltimes and amplitudes, where one factor is specified to capture the corresponding source singularity and the other factor is an unknown function smooth near the source. The resulting underlying unknown functions satisfy factored eikonal and transport equations, respectively. A third-order Lax-Friedrichs scheme is designed to compute the underlying functions. Thus, highly accurate first-arrival traveltimes and reliable amplitudes can be computed. Furthermore, asymptotic wavefields are constructed using computed traveltimes and amplitudes in the WKBJ form. Two-dimensional and 3D examples demonstrate the performance of the proposed algorithms, and the constructed WKBJ Green’s functions are in good agreement with direct solutions of the Helmholtz equation before caustics occur.


Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1114 ◽  
Author(s):  
Ku ◽  
Xiao ◽  
Yeih ◽  
Liu

This paper presents a study for solving the modified Helmholtz equation in layered materials using the multiple source meshfree approach (MSMA). The key idea of the MSMA starts with the method of fundamental solutions (MFS) as well as the collocation Trefftz method (CTM). The multiple source collocation scheme in the MSMA stems from the MFS and the basis functions are formulated using the CTM. The solution of the modified Helmholtz equation is therefore approximated by the superposition theorem using particular nonsingular functions by means of multiple sources located within the domain. To deal with the two-dimensional modified Helmholtz equation in layered materials, the domain decomposition method was adopted. Numerical examples were carried out to validate the method. The results illustrate that the MSMA is relatively simple because it avoids a complicated procedure for finding the appropriate position of the sources. Additionally, the MSMA for solving the modified Helmholtz equation is advantageous because the source points can be collocated on or within the domain boundary and the results are not sensitive to the location of source points. Finally, compared with other methods, highly accurate solutions can be obtained using the proposed method.


Author(s):  
N. Chinone ◽  
Y. Cho ◽  
R. Kosugi ◽  
Y. Tanaka ◽  
S. Harada ◽  
...  

Abstract A new technique for local deep level transient spectroscopy (DLTS) imaging using super-higher-order scanning nonlinear dielectric microscopy is proposed. Using this technique. SiCVSiC structure samples with different post oxidation annealing conditions were measured. We observed that the local DLTS signal decreases with post oxidation annealing (POA), which agrees with the well-known phenomena that POA reduces trap density. Furthermore, obtained local DLTS images had dark and bright areas, which is considered to show the trap distribution at/near SiCVSiC interface.


Sign in / Sign up

Export Citation Format

Share Document