deep level transient spectroscopy
Recently Published Documents


TOTAL DOCUMENTS

1139
(FIVE YEARS 71)

H-INDEX

47
(FIVE YEARS 3)

Author(s):  
М.М. Соболев ◽  
Ф.Ю. Солдатенков

The results of experimental studies of capacitance– voltage characteristics, spectra of deep-level transient spectroscopy of graded high-voltage GaAs p+−p0−i−n0 diodes fabricated by liquid-phase epitaxy at a crystallization temperature of 900C from one solution–melt due to autodoping with background impurities, in a hydrogen or argon ambient, before and after irradiation with neutrons. After neutron irradiation, deep-level transient spectroscopy spectra revealed wide zones of defect clusters with acceptor-like negatively charged traps in the n0-layer, which arise as a result of electron emission from states located above the middle of the band gap. It was found that the differences in capacitance–voltage characteristics of the structures grown in hydrogen or argon ambient after irradiation are due to different doses of irradiation of GaAs p+−p0−i−n0 structures and different degrees of compensation of shallow donor impurities by deep traps in the layers.


Author(s):  
Taro Kuwano ◽  
Ryoji Katsube ◽  
Steve Johnston ◽  
Adele Tamboli ◽  
Yoshitaro Nose

Abstract ZnSnP2, an emerging inorganic material for solar cells, was characterized by deep level transient spectroscopy (DLTS) and photoluminescence (PL). Acceptor- and donor-like traps with shallow energy levels were detected by DLTS analysis. The previous study based on first-principle calculation also suggested such traps were due to antisite defects of Zn and Sn. PL measurements also revealed sub-gap transitions related to these trap levels. Additionally, DLTS found a trap with deep level in ZnSnP2. A short lifetime of minority carrier in previous work might be due to such trap, coming from phosphorus vacancies and/or zinc interstitials suggested by first-principle study.


2021 ◽  
Vol 130 (20) ◽  
pp. 205701
Author(s):  
Hongyue Wang ◽  
Po-Chun (Brent) Hsu ◽  
Ming Zhao ◽  
Eddy Simoen ◽  
Stefan De Gendt ◽  
...  

2021 ◽  
Vol 2103 (1) ◽  
pp. 012088
Author(s):  
A A Maksimova ◽  
A I Baranov ◽  
A V Uvarov ◽  
D A Kudryashov ◽  
A S Gudovskikh

Abstract In this work the properties of the BP/Si heterojunction interface were investigated by capacitance methods, the deep levels transient spectroscopy method and admittance spectroscopy. Admittance spectroscopy did not detect any defects, but the deep level transient spectroscopy showed response with activation energy of 0.33 eV and capture cross-section σn=(1-10)·10-19 cm2 and defect concentration (NT) is in the order of 1013 cm-3. This defect level is a trap for electron with position of 0.33 eV below the conduction band in region near the BP/Si interface.


Author(s):  
Ivana Capan ◽  
Tomislav Brodar ◽  
Takahiro Makino ◽  
Vladimir Radulovic ◽  
Luka Snoj

We report on metastable defects introduced in n-type 4H-SiC material by epithermal and fast neutron irradiation. The epithermal and fast neutron irradiation defects in 4H-SiC are much less explored compared to electron or proton irradiation induced defects. In addition to silicon vacancy (Vsi) and carbon antisite-carbon vacancy (CAV) complex, the neutron irradiation has introduced four deep level defects, all arising from the metastable defect, the M-center. The metastable deep level defects were investigated by deep level transient spectroscopy (DLTS), high-resolution Laplace DLTS (L-DLTS) and isothermal DLTS. The existence of the fourth deep level M4, recently observed in ion implanted 4H-SiC, has been additionally confirmed in neutron irradiated samples. The isothermal DLTS technique has been proven as a useful tool for studying the metastable defects.


2021 ◽  
Author(s):  
Steve Johnston ◽  
Chuanxiao Xiao ◽  
Michael G. Deceglie ◽  
Ashley Gaulding ◽  
Chun-Sheng Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document