scholarly journals A Regularization Method to Solve a Cauchy Problem for the Two-Dimensional Modified Helmholtz Equation

Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 360 ◽  
Author(s):  
Shangqin He ◽  
Xiufang Feng

In this paper, the ill-posed problem of the two-dimensional modified Helmholtz equation is investigated in a strip domain. For obtaining a stable numerical approximation solution, a mollification regularization method with the de la Vallée Poussin kernel is proposed. An error estimate between the exact solution and approximation solution is given under suitable choices of the regularization parameter. Two numerical experiments show that our procedure is effective and stable with respect to perturbations in the data.

Author(s):  
Shangqin He ◽  
Xiufang Feng

In this paper, the ill-posed Cauchy problem for the Helmholtz equation is investigated in a strip domain. To obtain stable numerical solution, a mollification regularization method with Dirichlet kernel is proposed. Error estimate between the exact solution and its approximation is given. A numerical experiment of interest shows that our procedure is effective and stable with respect to perturbations of noise in the data.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Jinghuai Gao ◽  
Dehua Wang ◽  
Jigen Peng

An inverse source problem in the modified Helmholtz equation is considered. We give a Tikhonov-type regularization method and set up a theoretical frame to analyze the convergence of such method. A priori and a posteriori choice rules to find the regularization parameter are given. Numerical tests are presented to illustrate the effectiveness and stability of our proposed method.


2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Fan Yang ◽  
HengZhen Guo ◽  
XiaoXiao Li

This paper discusses the problem of determining an unknown source which depends only on one variable for the modified Helmholtz equation. This problem is ill-posed in the sense that the solution (if it exists) does not depend continuously on the data. The regularization solution is obtained by the simplified Tikhonov regularization method. Convergence estimate is presented between the exact solution and the regularization solution. Moreover, numerical results are presented to illustrate the accuracy and efficiency of this method.


Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 705 ◽  
Author(s):  
Fan Yang ◽  
Ping Fan ◽  
Xiao-Xiao Li

In this paper, the Cauchy problem of the modified Helmholtz equation (CPMHE) with perturbed wave number is considered. In the sense of Hadamard, this problem is severely ill-posed. The Fourier truncation regularization method is used to solve this Cauchy problem. Meanwhile, the corresponding error estimate between the exact solution and the regularized solution is obtained. A numerical example is presented to illustrate the validity and effectiveness of our methods.


Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 865 ◽  
Author(s):  
Fan Yang ◽  
Ping Fan ◽  
Xiao-Xiao Li ◽  
Xin-Yi Ma

In present paper, we deal with a backward diffusion problem for a time-fractional diffusion problem with a nonlinear source in a strip domain. We all know this nonlinear problem is severely ill-posed, i.e., the solution does not depend continuously on the measurable data. Therefore, we use the Fourier truncation regularization method to solve this problem. Under an a priori hypothesis and an a priori regularization parameter selection rule, we obtain the convergence error estimates between the regular solution and the exact solution at 0 ≤ x < 1 .


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Xiao-Xiao Li ◽  
Fan Yang ◽  
Jie Liu ◽  
Lan Wang

This paper discusses the problem of determining an unknown source which depends only on one variable for the modified Helmholtz equation. This problem is ill-posed in the sense that the solution (if it exists) does not depend continuously on the data. The regularization solution is obtained by the quasireversibility regularization method. Convergence estimate is presented between the exact solution and the regularization solution. Moreover, numerical results are presented to illustrate the accuracy and efficiency of this method.


2020 ◽  
Vol 18 (1) ◽  
pp. 1685-1697
Author(s):  
Zhenyu Zhao ◽  
Lei You ◽  
Zehong Meng

Abstract In this paper, a Cauchy problem for the Laplace equation is considered. We develop a modified Tikhonov regularization method based on Hermite expansion to deal with the ill posed-ness of the problem. The regularization parameter is determined by a discrepancy principle. For various smoothness conditions, the solution process of the method is uniform and the convergence rate can be obtained self-adaptively. Numerical tests are also carried out to verify the effectiveness of the method.


2013 ◽  
Vol 416-417 ◽  
pp. 1393-1398
Author(s):  
Chao Zhong Ma ◽  
Yong Wei Gu ◽  
Ji Fu ◽  
Yuan Lu Du ◽  
Qing Ming Gui

In a large number of measurement data processing, the ill-posed problem is widespread. For such problems, this paper introduces the solution of ill-posed problem of the unity of expression and Tikhonov regularization method, and then to re-collinearity diagnostics and metrics based on proposed based on complex collinearity diagnostics and the metric regularization method is given regularization matrix selection methods and regularization parameter determination formulas. Finally, it uses a simulation example to verify the effectiveness of the method.


Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 422
Author(s):  
Nguyen Anh Triet ◽  
Nguyen Duc Phuong ◽  
Van Thinh Nguyen ◽  
Can Nguyen-Huu

In this work, we focus on the Cauchy problem for the Poisson equation in the two dimensional domain, where the initial data is disturbed by random noise. In general, the problem is severely ill-posed in the sense of Hadamard, i.e., the solution does not depend continuously on the data. To regularize the instable solution of the problem, we have applied a nonparametric regression associated with the truncation method. Eventually, a numerical example has been carried out, the result shows that our regularization method is converged; and the error has been enhanced once the number of observation points is increased.


Sign in / Sign up

Export Citation Format

Share Document